Advanced Deep Learning for Computer Vision
Our project:
Load the following docker container and additional packages with
docker pull nvcr.io/nvidia/pytorch:19.06-py3
nvidia-docker run -it --rm -v /home/ubuntu:/workspace nvcr.io/nvidia/pytorch:19.06-py3
pip install tensorboardX
Install our code with
python setup.py install
The default runs our best model with a fusion after two set abstraction layers of PointNet++ Adapt data, 2d images paths or include them as argument and run the following command to reproduce our results
python train.py --lr 1e-3 --lr_pointnet 1e-3 --batch_size 8
To run the other model architectures that we implemented change the parameters in the initialization of our model (line 160 in train.py
)
- Direct concatentation:
fusion=False
,fuse_no_ft_pn=False
,pointnet_pointnet=False
- Process only geometry with PointNet++:
fusion=False
,fuse_no_ft_pn=True
,pointnet_pointnet=False
- PointNet++ in all steps:
fusion=False
,fuse_no_ft_pn=False
,pointnet_pointnet=True
- Fuse after set abstraction layers:
fusion=True
,fuse_at_position=4
,fuse_no_ft_pn=False
,pointnet_pointnet=False
- Fuse after two set abstraction layers:
fusion=True
,fuse_at_position=2
,fuse_no_ft_pn=False
,pointnet_pointnet=False
To evaluate the model set eval_flag = True
in l. 27 of train.py
.
To visualize a test scene set visual_flag = True
in l.28 of train.py
and set scene_nr in main
to the scene id that you want to visualize.
[1] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas A. Funkhouser, and Matthias Nießner. Scannet:Richly-annotated 3d reconstructions of indoor scenes. 2017.
[2] A.Dai,A.X.Chang,M.Savva,M.Halber,T.A.Funkhouser, and M. Nießner. Scannet: Richly-annotated 3d reconstruc- tions of indoor scenes. CoRR, abs/1702.04405, 2017. 1
[3] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. CoRR, abs/1706.02413, 2017. 1