Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, Ping Tan
Alibaba Group
Citation:
@inproceedings{li2022streaming,
title={Streaming Radiance Fields for 3D Video Synthesis},
author={Li, Lingzhi and Shen, Zhen and Shen, Li and Tan, Ping and others},
booktitle={Advances in Neural Information Processing Systems}
}
arXiv: https://arxiv.org/abs/2210.14831
Meet Room Dataset: https://drive.google.com/drive/folders/1lNmQ6_ykyKjT6UKy-SnqWoSlI5yjh3l_?usp=share_link
N3DV Dataset: https://github.com/facebookresearch/Neural_3D_Video
Following the setup of the orginal plenoxels' repository
- Initialize the first frame model
python opt.py -t <log_dir> <data_dir> -c configs/meetroom_init.json --scale 1.0
- Train the pilot model
python train_video_n3dv_pilot.py -t <log_dir> <data_dir> -c configs/meetroom.json --batch_size 20000 --pretrained <pretrained_ckpt> --n_iters 1000 --lr_sigma 0.3 --lr_sigma_final 0.3 --lr_sh 1e-2 --lr_sh_final 1e-4 --lr_sigma_decay_steps 1000 --lr_sh_decay_steps 1000 --frame_end 300 --fps 30 --train_use_all 0 --scale 1.0 --sh_keep_thres 1.0 --sh_prune_thres 0.1 --performance_mode --dilate_rate_before 1 --dilate_rate_after 1 --stop_thres 0.01 --compress_saving --save_delta --pilot_factor 2
- Train the full model
python train_video_n3dv_full.py -t <log_dir> <data_dir> -c configs/meetroom_full.json --batch_size 20000 --pretrained <pretrained_ckpt> --n_iters 500 --lr_sigma 1.0 --lr_sigma_final 1.0 --lr_sh 1e-2 --lr_sh_final 1e-2 --lr_sigma_decay_steps 500 --lr_sh_decay_steps 500 --frame_end 300 --fps 30 --train_use_all 0 --scale 1.0 --sh_keep_thres 1.5 --sh_prune_thres 0.3 --performance_mode --dilate_rate_before 2 --dilate_rate_after 2 --compress_saving --save_delta --apply_narrow_band
- Initialize the first frame model
python opt.py -t <log_dir> <data_dir> -c configs/init_ablation/n3dv_init.json --offset 500 --scale 0.5 --nosphereinit
- Train the pilot model
python train_video_n3dv_pilot.py -t <log_dir> <data_dir> -c configs/n3dv.json --batch_size 20000 --pretrained <pretrained_ckpt> --n_iters 750 --lr_sigma 1.0 --lr_sigma_final 1.0 --lr_sh 1e-2 --lr_sh_final 1e-3 --lr_sigma_decay_steps 750 --lr_sh_decay_steps 750 --frame_end 300 --fps 30 --train_use_all 0 --offset 750 --scale 0.5 --sh_keep_thres 0.5 --sh_prune_thres 0.1 --performance_mode --dilate_rate_before 1 --dilate_rate_after 1 --stop_thres 0.01 --compress_saving --save_delta --pilot_factor 2
- Train the full model
python train_video_n3dv_full.py -t <log_dir> <data_dir> -c configs/n3dv_full.json --batch_size 20000 --pretrained <pretrained_ckpt> --n_iters 500 --lr_sigma 1.0 --lr_sigma_final 1.0 --lr_sh 1e-2 --lr_sh_final 3e-3 --lr_sigma_decay_steps 500 --lr_sh_decay_steps 300 --frame_end 300 --fps 30 --train_use_all 0 --offset 1500 --scale 0.5 --sh_keep_thres 1.0 --sh_prune_thres 0.2 --performance_mode --dilate_rate_before 2 --dilate_rate_after 2 --stop_thres 0.01 --compress_saving --save_delta --apply_narrow_band
For Meet Room Dataset:
python render_delta.py -t -t <log_dir> <data_dir> -c configs/meetroom_full.json --batch_size 20000 --pretrained <pretrained_ckpt> --frame_end 300 --fps 30 --scale 1.0 --performance_mode
For N3DV Dataset:
python render_delta.py -t -t <log_dir> <data_dir> -c configs/n3dv_full.json --batch_size 20000 --pretrained <pretrained_ckpt> --frame_end 300 --fps 30 --scale 0.5 --performance_mode