Skip to content

Commit

Permalink
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Browse files Browse the repository at this point in the history
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table.  Consider the following:

A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep.  Suppose the returned ptep points to a
shared pmd.

Now, another task truncates the hugetlbfs file.  As part of truncation, it
unmaps everyone who has the file mapped.  If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called.  For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd.  If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse.  This leads to bad things such as incorrect page
map/reference counts or invalid memory references.

To fix, expand the use of i_mmap_rwsem as follows:

- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
  huge_pmd_share is only called via huge_pte_alloc, so callers of
  huge_pte_alloc take i_mmap_rwsem before calling.  In addition, callers
  of huge_pte_alloc continue to hold the semaphore until finished with the
  ptep.

- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is
  called.

[[email protected]: add explicit check for mapping != null]
Link: http://lkml.kernel.org/r/[email protected]
Fixes: 39dde65 ("shared page table for hugetlb page")
Signed-off-by: Mike Kravetz <[email protected]>
Acked-by: Kirill A. Shutemov <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Naoya Horiguchi <[email protected]>
Cc: "Aneesh Kumar K . V" <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Davidlohr Bueso <[email protected]>
Cc: Prakash Sangappa <[email protected]>
Cc: Colin Ian King <[email protected]>
Cc: <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
  • Loading branch information
mjkravetz authored and torvalds committed Dec 28, 2018
1 parent 1ecc07f commit b43a999
Show file tree
Hide file tree
Showing 5 changed files with 88 additions and 20 deletions.
64 changes: 49 additions & 15 deletions mm/hugetlb.c
Original file line number Diff line number Diff line change
Expand Up @@ -3238,6 +3238,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
struct page *ptepage;
unsigned long addr;
int cow;
struct address_space *mapping = vma->vm_file->f_mapping;
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
struct mmu_notifier_range range;
Expand All @@ -3249,13 +3250,23 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
mmu_notifier_range_init(&range, src, vma->vm_start,
vma->vm_end);
mmu_notifier_invalidate_range_start(&range);
} else {
/*
* For shared mappings i_mmap_rwsem must be held to call
* huge_pte_alloc, otherwise the returned ptep could go
* away if part of a shared pmd and another thread calls
* huge_pmd_unshare.
*/
i_mmap_lock_read(mapping);
}

for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
spinlock_t *src_ptl, *dst_ptl;

src_pte = huge_pte_offset(src, addr, sz);
if (!src_pte)
continue;

dst_pte = huge_pte_alloc(dst, addr, sz);
if (!dst_pte) {
ret = -ENOMEM;
Expand Down Expand Up @@ -3326,6 +3337,8 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,

if (cow)
mmu_notifier_invalidate_range_end(&range);
else
i_mmap_unlock_read(mapping);

return ret;
}
Expand Down Expand Up @@ -3771,14 +3784,18 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
};

/*
* hugetlb_fault_mutex must be dropped before
* handling userfault. Reacquire after handling
* fault to make calling code simpler.
* hugetlb_fault_mutex and i_mmap_rwsem must be
* dropped before handling userfault. Reacquire
* after handling fault to make calling code simpler.
*/
hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
idx, haddr);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);

ret = handle_userfault(&vmf, VM_UFFD_MISSING);

i_mmap_lock_read(mapping);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
goto out;
}
Expand Down Expand Up @@ -3926,27 +3943,43 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,

ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
if (ptep) {
/*
* Since we hold no locks, ptep could be stale. That is
* OK as we are only making decisions based on content and
* not actually modifying content here.
*/
entry = huge_ptep_get(ptep);
if (unlikely(is_hugetlb_entry_migration(entry))) {
migration_entry_wait_huge(vma, mm, ptep);
return 0;
} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
return VM_FAULT_HWPOISON_LARGE |
VM_FAULT_SET_HINDEX(hstate_index(h));
} else {
ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
if (!ptep)
return VM_FAULT_OOM;
}

/*
* Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
* until finished with ptep. This prevents huge_pmd_unshare from
* being called elsewhere and making the ptep no longer valid.
*
* ptep could have already be assigned via huge_pte_offset. That
* is OK, as huge_pte_alloc will return the same value unless
* something changed.
*/
mapping = vma->vm_file->f_mapping;
idx = vma_hugecache_offset(h, vma, haddr);
i_mmap_lock_read(mapping);
ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
if (!ptep) {
i_mmap_unlock_read(mapping);
return VM_FAULT_OOM;
}

/*
* Serialize hugepage allocation and instantiation, so that we don't
* get spurious allocation failures if two CPUs race to instantiate
* the same page in the page cache.
*/
idx = vma_hugecache_offset(h, vma, haddr);
hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
mutex_lock(&hugetlb_fault_mutex_table[hash]);

Expand Down Expand Up @@ -4034,6 +4067,7 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
}
out_mutex:
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
/*
* Generally it's safe to hold refcount during waiting page lock. But
* here we just wait to defer the next page fault to avoid busy loop and
Expand Down Expand Up @@ -4638,10 +4672,12 @@ void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
* Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
* and returns the corresponding pte. While this is not necessary for the
* !shared pmd case because we can allocate the pmd later as well, it makes the
* code much cleaner. pmd allocation is essential for the shared case because
* pud has to be populated inside the same i_mmap_rwsem section - otherwise
* racing tasks could either miss the sharing (see huge_pte_offset) or select a
* bad pmd for sharing.
* code much cleaner.
*
* This routine must be called with i_mmap_rwsem held in at least read mode.
* For hugetlbfs, this prevents removal of any page table entries associated
* with the address space. This is important as we are setting up sharing
* based on existing page table entries (mappings).
*/
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
Expand All @@ -4658,7 +4694,6 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
if (!vma_shareable(vma, addr))
return (pte_t *)pmd_alloc(mm, pud, addr);

i_mmap_lock_write(mapping);
vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
if (svma == vma)
continue;
Expand Down Expand Up @@ -4688,7 +4723,6 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
spin_unlock(ptl);
out:
pte = (pte_t *)pmd_alloc(mm, pud, addr);
i_mmap_unlock_write(mapping);
return pte;
}

Expand All @@ -4699,7 +4733,7 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
* indicated by page_count > 1, unmap is achieved by clearing pud and
* decrementing the ref count. If count == 1, the pte page is not shared.
*
* called with page table lock held.
* Called with page table lock held and i_mmap_rwsem held in write mode.
*
* returns: 1 successfully unmapped a shared pte page
* 0 the underlying pte page is not shared, or it is the last user
Expand Down
16 changes: 14 additions & 2 deletions mm/memory-failure.c
Original file line number Diff line number Diff line change
Expand Up @@ -966,7 +966,7 @@ static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
struct address_space *mapping;
LIST_HEAD(tokill);
bool unmap_success;
bool unmap_success = true;
int kill = 1, forcekill;
struct page *hpage = *hpagep;
bool mlocked = PageMlocked(hpage);
Expand Down Expand Up @@ -1028,7 +1028,19 @@ static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
if (kill)
collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);

unmap_success = try_to_unmap(hpage, ttu);
if (!PageHuge(hpage)) {
unmap_success = try_to_unmap(hpage, ttu);
} else if (mapping) {
/*
* For hugetlb pages, try_to_unmap could potentially call
* huge_pmd_unshare. Because of this, take semaphore in
* write mode here and set TTU_RMAP_LOCKED to indicate we
* have taken the lock at this higer level.
*/
i_mmap_lock_write(mapping);
unmap_success = try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
i_mmap_unlock_write(mapping);
}
if (!unmap_success)
pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
pfn, page_mapcount(hpage));
Expand Down
13 changes: 12 additions & 1 deletion mm/migrate.c
Original file line number Diff line number Diff line change
Expand Up @@ -1324,8 +1324,19 @@ static int unmap_and_move_huge_page(new_page_t get_new_page,
goto put_anon;

if (page_mapped(hpage)) {
struct address_space *mapping = page_mapping(hpage);

/*
* try_to_unmap could potentially call huge_pmd_unshare.
* Because of this, take semaphore in write mode here and
* set TTU_RMAP_LOCKED to let lower levels know we have
* taken the lock.
*/
i_mmap_lock_write(mapping);
try_to_unmap(hpage,
TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
TTU_RMAP_LOCKED);
i_mmap_unlock_write(mapping);
page_was_mapped = 1;
}

Expand Down
4 changes: 4 additions & 0 deletions mm/rmap.c
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
* page->flags PG_locked (lock_page)
* hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
* mapping->i_mmap_rwsem
* hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
* anon_vma->rwsem
* mm->page_table_lock or pte_lock
* zone_lru_lock (in mark_page_accessed, isolate_lru_page)
Expand Down Expand Up @@ -1378,6 +1379,9 @@ static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
/*
* If sharing is possible, start and end will be adjusted
* accordingly.
*
* If called for a huge page, caller must hold i_mmap_rwsem
* in write mode as it is possible to call huge_pmd_unshare.
*/
adjust_range_if_pmd_sharing_possible(vma, &range.start,
&range.end);
Expand Down
11 changes: 9 additions & 2 deletions mm/userfaultfd.c
Original file line number Diff line number Diff line change
Expand Up @@ -267,10 +267,14 @@ static __always_inline ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm,
VM_BUG_ON(dst_addr & ~huge_page_mask(h));

/*
* Serialize via hugetlb_fault_mutex
* Serialize via i_mmap_rwsem and hugetlb_fault_mutex.
* i_mmap_rwsem ensures the dst_pte remains valid even
* in the case of shared pmds. fault mutex prevents
* races with other faulting threads.
*/
idx = linear_page_index(dst_vma, dst_addr);
mapping = dst_vma->vm_file->f_mapping;
i_mmap_lock_read(mapping);
idx = linear_page_index(dst_vma, dst_addr);
hash = hugetlb_fault_mutex_hash(h, dst_mm, dst_vma, mapping,
idx, dst_addr);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
Expand All @@ -279,20 +283,23 @@ static __always_inline ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm,
dst_pte = huge_pte_alloc(dst_mm, dst_addr, huge_page_size(h));
if (!dst_pte) {
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
goto out_unlock;
}

err = -EEXIST;
dst_pteval = huge_ptep_get(dst_pte);
if (!huge_pte_none(dst_pteval)) {
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
goto out_unlock;
}

err = hugetlb_mcopy_atomic_pte(dst_mm, dst_pte, dst_vma,
dst_addr, src_addr, &page);

mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
vm_alloc_shared = vm_shared;

cond_resched();
Expand Down

0 comments on commit b43a999

Please sign in to comment.