forked from pydata/xarray
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Start adding benchmarking for basic operations. * Update indexing.py * Benchmark for indexing. * Make it a class. * Add key to setup * Use seed in randn and randint. Fix bug in dask benchmark
- Loading branch information
Showing
3 changed files
with
147 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -34,6 +34,9 @@ nosetests.xml | |
.cache | ||
.ropeproject/ | ||
|
||
# asv environments | ||
.asv | ||
|
||
# Translations | ||
*.mo | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import xarray as xr | ||
|
||
from . import randn, randint, requires_dask | ||
|
||
|
||
nx = 3000 | ||
ny = 2000 | ||
nt = 1000 | ||
|
||
basic_indexes = { | ||
'1slice': {'x': slice(0, 3)}, | ||
'1slice-1scalar': {'x': 0, 'y': slice(None, None, 3)}, | ||
'2slicess-1scalar': {'x': slice(3, -3, 3), 'y': 1, 't': slice(None, -3, 3)} | ||
} | ||
|
||
basic_assignment_values = { | ||
'1slice': xr.DataArray(randn((3, ny), frac_nan=0.1), dims=['x', 'y']), | ||
'1slice-1scalar': xr.DataArray(randn(int(ny / 3) + 1, frac_nan=0.1), | ||
dims=['y']), | ||
'2slicess-1scalar': xr.DataArray(randn(int((nx - 6) / 3), frac_nan=0.1), | ||
dims=['x']) | ||
} | ||
|
||
outer_indexes = { | ||
'1d': {'x': randint(0, nx, 400)}, | ||
'2d': {'x': randint(0, nx, 500), 'y': randint(0, ny, 400)}, | ||
'2d-1scalar': {'x': randint(0, nx, 100), 'y': 1, 't': randint(0, nt, 400)} | ||
} | ||
|
||
outer_assignment_values = { | ||
'1d': xr.DataArray(randn((400, ny), frac_nan=0.1), dims=['x', 'y']), | ||
'2d': xr.DataArray(randn((500, 400), frac_nan=0.1), dims=['x', 'y']), | ||
'2d-1scalar': xr.DataArray(randn(100, frac_nan=0.1), dims=['x']) | ||
} | ||
|
||
vectorized_indexes = { | ||
'1-1d': {'x': xr.DataArray(randint(0, nx, 400), dims='a')}, | ||
'2-1d': {'x': xr.DataArray(randint(0, nx, 400), dims='a'), | ||
'y': xr.DataArray(randint(0, ny, 400), dims='a')}, | ||
'3-2d': {'x': xr.DataArray(randint(0, nx, 400).reshape(4, 100), | ||
dims=['a', 'b']), | ||
'y': xr.DataArray(randint(0, ny, 400).reshape(4, 100), | ||
dims=['a', 'b']), | ||
't': xr.DataArray(randint(0, nt, 400).reshape(4, 100), | ||
dims=['a', 'b'])}, | ||
} | ||
|
||
vectorized_assignment_values = { | ||
'1-1d': xr.DataArray(randn((400, 2000)), dims=['a', 'y'], | ||
coords={'a': randn(400)}), | ||
'2-1d': xr.DataArray(randn(400), dims=['a', ], coords={'a': randn(400)}), | ||
'3-2d': xr.DataArray(randn((4, 100)), dims=['a', 'b'], | ||
coords={'a': randn(4), 'b': randn(100)}) | ||
} | ||
|
||
|
||
class Base(object): | ||
def setup(self, key): | ||
self.ds = xr.Dataset( | ||
{'var1': (('x', 'y'), randn((nx, ny), frac_nan=0.1)), | ||
'var2': (('x', 't'), randn((nx, nt))), | ||
'var3': (('t', ), randn(nt))}, | ||
coords={'x': np.arange(nx), | ||
'y': np.linspace(0, 1, ny), | ||
't': pd.date_range('1970-01-01', periods=nt, freq='D'), | ||
'x_coords': ('x', np.linspace(1.1, 2.1, nx))}) | ||
|
||
|
||
class Indexing(Base): | ||
def time_indexing_basic(self, key): | ||
self.ds.isel(**basic_indexes[key]).load() | ||
|
||
time_indexing_basic.param_names = ['key'] | ||
time_indexing_basic.params = [list(basic_indexes.keys())] | ||
|
||
def time_indexing_outer(self, key): | ||
self.ds.isel(**outer_indexes[key]).load() | ||
|
||
time_indexing_outer.param_names = ['key'] | ||
time_indexing_outer.params = [list(outer_indexes.keys())] | ||
|
||
def time_indexing_vectorized(self, key): | ||
self.ds.isel(**vectorized_indexes[key]).load() | ||
|
||
time_indexing_vectorized.param_names = ['key'] | ||
time_indexing_vectorized.params = [list(vectorized_indexes.keys())] | ||
|
||
|
||
class Assignment(Base): | ||
def time_assignment_basic(self, key): | ||
ind = basic_indexes[key] | ||
val = basic_assignment_values[key] | ||
self.ds['var1'][ind.get('x', slice(None)), | ||
ind.get('y', slice(None))] = val | ||
|
||
time_assignment_basic.param_names = ['key'] | ||
time_assignment_basic.params = [list(basic_indexes.keys())] | ||
|
||
def time_assignment_outer(self, key): | ||
ind = outer_indexes[key] | ||
val = outer_assignment_values[key] | ||
self.ds['var1'][ind.get('x', slice(None)), | ||
ind.get('y', slice(None))] = val | ||
|
||
time_assignment_outer.param_names = ['key'] | ||
time_assignment_outer.params = [list(outer_indexes.keys())] | ||
|
||
def time_assignment_vectorized(self, key): | ||
ind = vectorized_indexes[key] | ||
val = vectorized_assignment_values[key] | ||
self.ds['var1'][ind.get('x', slice(None)), | ||
ind.get('y', slice(None))] = val | ||
|
||
time_assignment_vectorized.param_names = ['key'] | ||
time_assignment_vectorized.params = [list(vectorized_indexes.keys())] | ||
|
||
|
||
class IndexingDask(Indexing): | ||
def setup(self, key): | ||
requires_dask() | ||
super(IndexingDask, self).setup(key) | ||
self.ds = self.ds.chunk({'x': 100, 'y': 50, 't': 50}) |