The CLI tool to put Babelfish's UASTs to ClickHouse DB.
It is written in Go and has zero dependencies. The list of solved problems includes:
- Normalizing the UAST even stronger than in the Semantic mode.
- Converting a tree structure to a linear list of "interesting" nodes.
- Handling runtime errors which are typical to big data processing: OOMs, crashes, DB insertion failures, etc.
- Running distributed and unattended.
You need a Go compiler >=1.11.
export GO111MODULE=on
go build uast2clickhouse
Install ClickHouse >= 19.4 and initialize the DB schema:
clickhouse-client --query="CREATE TABLE uasts (
id Int32,
left Int32,
right Int32,
repo String,
lang String,
file String,
line Int32,
parents Array(Int32),
pkey String,
roles Array(Int16),
type String,
orig_type String,
uptypes Array(String),
value String
) ENGINE = MergeTree() ORDER BY (repo, file, id);
CREATE TABLE meta (
repo String,
siva_filenames Array(String),
file_count Int32,
langs Array(String),
langs_bytes_count Array(UInt32),
langs_lines_count Array(UInt32),
langs_files_count Array(UInt32),
commits_count Int32,
branches_count Int32,
forks_count Int32,
empty_lines_count Array(UInt32),
code_lines_count Array(UInt32),
comment_lines_count Array(UInt32),
license_names Array(String),
license_confidences Array(Float32),
stars Int32,
size Int64,
INDEX stars stars TYPE minmax GRANULARITY 1
) ENGINE = MergeTree() ORDER BY repo;"
Then run on each of the nodes
./uast2clickhouse --heads heads.csv --db default:[email protected]/default /path/to/parquet
or
./uast2clickhouse --heads heads.csv --db default:[email protected]/default 10.150.0.9:11300
heads.csv
contain the mapping from the HEAD UUIDs in Parquet to the actual repository names. If you
work with PGA, download it or generate with list-pga-heads.
--db default:[email protected]/default
is the ClickHouse connection string.
10.150.0.9:11300
is a sample beanstalkd message queue address for distributed processing.
You should specify --read-streams
and --db-streams
to reach the peak performance. --read-streams
sets the number of
goroutines to read the Parquet file, and --db-streams
set the number of HTTP threads which upload the SQL insertions to ClickHouse.
Usually --db-streams
is bigger than --read-streams
. The bigger values increase the memory pressure.
Input: UASTs extracted from PGA'19, 204068 Parquet files overall in a 6 TB Google Cloud volume.
DB instance configuration: Google Cloud "highcpu" with 64 cores, 58GB of RAM. 6 local NVMe SSDs joined in RAID0 and formatted to ext4 with journal disabled. Ubuntu 18.04.
Worker configuration: Ubuntu 18.04 with 20GB of SSD disk and the UASTs volume attached read-only at /mnt/uasts
.
- Install and run
beanstalkd
on the DB instance. Build locally andscp
there thebeanstool
binary. - List all the Parquet files with
find /mnt/uasts -name '*.parquet' | gzip > tasks.gz
on one of the workers. scp tasks.gz
to the DB instance.zcat tasks.gz | xargs -n1 ./beanstool put --ttr 1000h -t default -b
to fill the queue.- Install and setup ClickHouse on the DB instance. There are sample
/etc/clickhouse-server/config.xml
and/etc/clickhouse-server/users.xml
. - Execute the pushing procedure in 4 stages.
- 16 workers, 2 cores, 4 GB RAM each.
./uast2clickhouse --read-streams 2 --db-streams 6 --heads heads.csv --db default:[email protected]/default 10.150.0.9:11300
. This succeeds with ~80% of the tasks. Then./beanstool kick --num NNN -t default
. - 16 workers, 2 cores, 4 GB RAM each.
./uast2clickhouse --read-streams 1 --db-streams 1 --heads heads.csv --db default:[email protected]/default 10.150.0.9:11300
. This succeeds with all but 1k tasks. - 16 workers, 2 cores, 16 GB RAM each ("highmem"). Same command. This leaves only ~10 tasks.
- 2 workers, 4 cores, 32 GB RAM each ("highmem"). Same command, full success.
- Create the secondary DB indexes.
SET allow_experimental_data_skipping_indices = 1;
ALTER TABLE uasts ADD INDEX lang lang TYPE set(0) GRANULARITY 1;
ALTER TABLE uasts ADD INDEX type type TYPE set(0) GRANULARITY 1;
ALTER TABLE uasts ADD INDEX value_exact value TYPE bloom_filter() GRANULARITY 1;
ALTER TABLE uasts ADD INDEX left (repo, file, left) TYPE minmax GRANULARITY 1;
ALTER TABLE uasts ADD INDEX right (repo, file, right) TYPE minmax GRANULARITY 1;
ALTER TABLE uasts MATERIALIZE INDEX lang;
ALTER TABLE uasts MATERIALIZE INDEX type;
ALTER TABLE uasts MATERIALIZE INDEX value_exact;
ALTER TABLE uasts MATERIALIZE INDEX left;
ALTER TABLE uasts MATERIALIZE INDEX right;
OPTIMIZE TABLE uasts FINAL;
The whole thing takes ~1 week.
There are sadly no tests at the moment. We are going to fix this.
Apache 2.0, see LICENSE.