Skip to content

Code for the paper "Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Localization", ICCV 2019, http://arxiv.org/abs/1910.04562.

Notifications You must be signed in to change notification settings

star0071/iccv19_attribute

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Localization

Code for the paper "Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Localization", ICCV 2019, Seoul.

[Paper] [Poster]

Contact: [email protected] or [email protected]

Environment

  • Python 3.6+
  • PyTorch 0.4+

Datasets

The original datasets should be processed to match the DataLoader.

An example: dangweili/pedestrian-attribute-recognition-pytorch.

Training and Testing

python main.py --approach=inception_iccv --experiment=rap
python main.py --approach=inception_iccv --experiment=rap -e --resume='model_path'

Reference

If this work is useful to your research, please cite:

@inproceedings{tang2019improving,
  title={Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Localization},
  author={Tang, Chufeng and Sheng, Lu and Zhang, Zhaoxiang and Hu, Xiaolin},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={4997--5006},
  year={2019}
}

About

Code for the paper "Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Localization", ICCV 2019, http://arxiv.org/abs/1910.04562.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%