About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Rayleigh distribution constructor.
npm install @stdlib/stats-base-dists-rayleigh-ctor
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var Rayleigh = require( '@stdlib/stats-base-dists-rayleigh-ctor' );
Returns an Rayleigh distribution object.
var rayleigh = new Rayleigh();
var mu = rayleigh.mean;
// returns ~1.253
By default, sigma = 1.0
. To create a distribution having a different scale parameter sigma
, provide a parameter value.
var rayleigh = new Rayleigh( 4.0 );
var mu = rayleigh.mean;
// returns ~5.013
A Rayleigh distribution object has the following properties and methods...
Scale parameter of the distribution. sigma
must be a positive number.
var rayleigh = new Rayleigh( 2.0 );
var sigma = rayleigh.sigma;
// returns 2.0
rayleigh.sigma = 3.0;
sigma = rayleigh.sigma;
// returns 3.0
Returns the differential entropy.
var rayleigh = new Rayleigh( 4.0 );
var entropy = rayleigh.entropy;
// returns ~2.328
Returns the excess kurtosis.
var rayleigh = new Rayleigh( 4.0 );
var kurtosis = rayleigh.kurtosis;
// returns ~0.245
Returns the median.
var rayleigh = new Rayleigh( 4.0 );
var mu = rayleigh.mean;
// returns ~5.013
Returns the median.
var rayleigh = new Rayleigh( 4.0 );
var median = rayleigh.median;
// returns ~4.71
Returns the mode.
var rayleigh = new Rayleigh( 4.0 );
var mode = rayleigh.mode;
// returns 4.0
Returns the skewness.
var rayleigh = new Rayleigh( 4.0 );
var skewness = rayleigh.skewness;
// returns ~0.631
Returns the standard deviation.
var rayleigh = new Rayleigh( 4.0 );
var s = rayleigh.stdev;
// returns ~2.62
Returns the variance.
var rayleigh = new Rayleigh( 4.0 );
var s2 = rayleigh.variance;
// returns ~6.867
Evaluates the cumulative distribution function (CDF).
var rayleigh = new Rayleigh( 2.0 );
var y = rayleigh.cdf( 1.5 );
// returns ~0.245
Evaluates the natural logarithm of the cumulative distribution function (CDF).
var rayleigh = new Rayleigh( 2.0 );
var y = rayleigh.logcdf( 1.5 );
// returns ~-1.406
Evaluates the natural logarithm of the probability density function (PDF).
var rayleigh = new Rayleigh( 2.0 );
var y = rayleigh.logpdf( 0.8 );
// returns ~-1.689
Evaluates the moment-generating function (MGF).
var rayleigh = new Rayleigh( 2.0 );
var y = rayleigh.mgf( 0.5 );
// returns ~5.586
Evaluates the probability density function (PDF).
var rayleigh = new Rayleigh( 2.0 );
var y = rayleigh.pdf( 0.8 );
// returns ~0.185
Evaluates the quantile function at probability p
.
var rayleigh = new Rayleigh( 2.0 );
var y = rayleigh.quantile( 0.5 );
// returns ~2.355
y = rayleigh.quantile( 1.9 );
// returns NaN
var Rayleigh = require( '@stdlib/stats-base-dists-rayleigh-ctor' );
var rayleigh = new Rayleigh( 2.0, 4.0 );
var mu = rayleigh.mean;
// returns ~2.507
var mode = rayleigh.mode;
// returns 2.0
var s2 = rayleigh.variance;
// returns ~1.717
var y = rayleigh.cdf( 0.8 );
// returns ~0.077
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.