Skip to content

Commit

Permalink
Add booleanMask op (tensorflow#1749)
Browse files Browse the repository at this point in the history
FEATURE

Add tf.booleanMask op. Feature requested in [tensorflow/tfjs#380](tensorflow/tfjs#380).

Reference:
* [tf.boolean_mask documentation](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/boolean_mask?hl=en)
* [tf.boolean_mask tensorflow python implementation](https://github.com/tensorflow/tensorflow/blob/r2.0/tensorflow/python/ops/array_ops.py#L1274)
  • Loading branch information
syt123450 authored and Nikhil Thorat committed Aug 7, 2019
1 parent eb2ab45 commit cac5b15
Show file tree
Hide file tree
Showing 4 changed files with 208 additions and 0 deletions.
87 changes: 87 additions & 0 deletions src/ops/boolean_mask.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
/**
* @license
* Copyright 2018 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/

import {Tensor} from '../tensor';
import {convertToTensor} from '../tensor_util_env';
import {TensorLike} from '../types';
import * as util from '../util';

import {whereAsync} from './logical_ops';
import {gather} from './segment_ops';

/**
* Apply boolean mask to tensor.
*
* ```js
* const tensor = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]);
* const mask = tf.tensor1d([1, 0, 1], 'bool');
* const result = await tf.booleanMask(tensor, mask);
* result.print();
* ```
*
* @param N-D tensor.
* @param mask K-D boolean tensor, K <= N and K must be known statically.
* @param axis A 0-D int Tensor representing the axis in tensor to mask from.
* By default, axis is 0 which will mask from the first dimension.
* Otherwise K + axis <= N.
*/
/** @doc {heading: 'Tensors', subheading: 'Slicing and Joining'} */
async function booleanMask_(
tensor: Tensor|TensorLike, mask: Tensor|TensorLike,
axis?: number): Promise<Tensor> {
const $tensor = convertToTensor(tensor, 'tensor', 'boolMask');
const $mask = convertToTensor(mask, 'mask', 'boolMask', 'bool');

const axisFrom = axis == null ? 0 : axis;
const maskDim = $mask.rank;
const tensorShape = $tensor.shape;

util.assert(maskDim > 0, () => 'mask cannot be scalar');
util.assertShapesMatch(
tensorShape.slice(axisFrom, axisFrom + maskDim), $mask.shape,
`mask's shape must match the first K dimensions of tensor's shape,`);

let leadingSize = 1;
for (let i = axisFrom; i < axisFrom + maskDim; i++) {
leadingSize *= tensorShape[i];
}
const targetTensorShape =
tensorShape.slice(0, axisFrom)
.concat([leadingSize], tensorShape.slice(axisFrom + maskDim));
const reshapedTensor = $tensor.reshape(targetTensorShape);
const reshapedMask = $mask.reshape([-1]);
const positivePositions = await whereAsync(reshapedMask);
const indices = positivePositions.squeeze([1]);

const res = gather(reshapedTensor, indices, axisFrom);

// Ensure no memory leak.
if (tensor !== $tensor) {
$tensor.dispose();
}
if (mask !== $mask) {
$mask.dispose();
}
indices.dispose();
reshapedTensor.dispose();
reshapedMask.dispose();
positivePositions.dispose();

return res;
}

export const booleanMask = booleanMask_;
119 changes: 119 additions & 0 deletions src/ops/boolean_mask_test.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
/**
* @license
* Copyright 2018 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/

import * as tf from '../index';
import {ALL_ENVS, describeWithFlags} from '../jasmine_util';
import {Tensor} from '../tensor';
import {expectArraysClose} from '../test_util';

describeWithFlags('booleanMask', ALL_ENVS, () => {
it('1d array, 1d mask, default axis', async () => {
const array = tf.tensor1d([1, 2, 3]);
const mask = tf.tensor1d([1, 0, 1], 'bool');
const result = await tf.booleanMask(array, mask);
expect(result.shape).toEqual([2]);
expect(result.dtype).toBe('float32');
expectArraysClose(await result.data(), [1, 3]);
});

it('2d array, 1d mask, default axis', async () => {
const array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]);
const mask = tf.tensor1d([1, 0, 1], 'bool');
const result = await tf.booleanMask(array, mask);
expect(result.shape).toEqual([2, 2]);
expect(result.dtype).toBe('float32');
expectArraysClose(await result.data(), [1, 2, 5, 6]);
});

it('2d array, 2d mask, default axis', async () => {
const array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]);
const mask = tf.tensor2d([1, 0, 1, 0, 1, 0], [3, 2], 'bool');
const result = await tf.booleanMask(array, mask);
expect(result.shape).toEqual([3]);
expect(result.dtype).toBe('float32');
expectArraysClose(await result.data(), [1, 3, 5]);
});

it('2d array, 1d mask, axis=1', async () => {
const array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]);
const mask = tf.tensor1d([0, 1], 'bool');
const axis = 1;
const result = await tf.booleanMask(array, mask, axis);
expect(result.shape).toEqual([3, 1]);
expect(result.dtype).toBe('float32');
expectArraysClose(await result.data(), [2, 4, 6]);
});

it('accepts tensor-like object as array or mask', async () => {
const array = [[1, 2], [3, 4], [5, 6]];
const mask = [1, 0, 1];
const result = await tf.booleanMask(array, mask);
expect(result.shape).toEqual([2, 2]);
expect(result.dtype).toBe('float32');
expectArraysClose(await result.data(), [1, 2, 5, 6]);
});

it('ensure no memory leak', async () => {
const numTensorsBefore = tf.memory().numTensors;

const array = tf.tensor1d([1, 2, 3]);
const mask = tf.tensor1d([1, 0, 1], 'bool');
let resultPromise: Promise<Tensor> = null;

tf.tidy(() => {
resultPromise = tf.booleanMask(array, mask);
});

const result = await resultPromise;
expect(result.shape).toEqual([2]);
expect(result.dtype).toBe('float32');
expectArraysClose(await result.data(), [1, 3]);
array.dispose();
mask.dispose();
result.dispose();

const numTensorsAfter = tf.memory().numTensors;
expect(numTensorsAfter).toBe(numTensorsBefore);
});

it('should throw if mask is scalar', async () => {
const array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]);
const mask = tf.scalar(1, 'bool');
let errorMessage = 'No error thrown.';
try {
await tf.booleanMask(array, mask);
} catch (error) {
errorMessage = error.message;
}
expect(errorMessage).toBe('mask cannot be scalar');
});

it('should throw if array and mask shape miss match', async () => {
const array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]);
const mask = tf.tensor2d([1, 0], [1, 2], 'bool');
let errorMessage = 'No error thrown.';
try {
await tf.booleanMask(array, mask);
} catch (error) {
errorMessage = error.message;
}
expect(errorMessage)
.toBe(
`mask's shape must match the first K ` +
`dimensions of tensor's shape, Shapes 3,2 and 1,2 must match`);
});
});
1 change: 1 addition & 0 deletions src/ops/ops.ts
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
*/

export * from './batchnorm';
export * from './boolean_mask';
export * from './complex_ops';
export * from './concat_split';
export * from './conv';
Expand Down
1 change: 1 addition & 0 deletions src/tests.ts
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ import './ops/array_ops_test';
import './ops/axis_util_test';
import './ops/batchnorm_test';
import './ops/binary_ops_test';
import './ops/boolean_mask_test';
import './ops/broadcast_util_test';
import './ops/clone_test';
import './ops/compare_ops_test';
Expand Down

0 comments on commit cac5b15

Please sign in to comment.