Skip to content

Commit

Permalink
added example of a siamese network where hyperas are used inside the …
Browse files Browse the repository at this point in the history
…intermediate functions through the parameterization of the search space created inside model function
  • Loading branch information
haramoz committed Aug 24, 2018
1 parent 295e946 commit cb1f61d
Showing 1 changed file with 147 additions and 0 deletions.
147 changes: 147 additions & 0 deletions examples/hyperas_in_intermediate_fns.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
import numpy
import random
from keras.datasets import mnist
from keras.models import Model
from keras.layers import Input, Flatten, Dense, Dropout, Lambda
from keras.optimizers import RMSprop
from keras import backend as K

from hyperopt import Trials, STATUS_OK, tpe
from hyperas import optim
from hyperas.distributions import choice, uniform
from sklearn.metrics import roc_auc_score

def euclidean_distance(vects):
x, y = vects
return K.sqrt(K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True), K.epsilon()))


def eucl_dist_output_shape(shapes):
shape1, shape2 = shapes
return (shape1[0], 1)

def create_pairs(x, digit_indices):
num_classes = 10
pairs = []
labels = []
n = min([len(digit_indices[d]) for d in range(num_classes)]) - 1
for d in range(num_classes):
for i in range(n):
z1, z2 = digit_indices[d][i], digit_indices[d][i + 1]
pairs += [[x[z1], x[z2]]]
inc = random.randrange(1, num_classes)
dn = (d + inc) % num_classes
z1, z2 = digit_indices[d][i], digit_indices[dn][i]
pairs += [[x[z1], x[z2]]]
labels += [1, 0]
return numpy.array(pairs), numpy.array(labels)


def create_base_network(input_shape,dense_filter1,dense_filter2,dense_filter3,dropout1,dropout2):

input = Input(shape=input_shape)
x = Flatten()(input)
x = Dense(dense_filter1, activation='relu')(x)
x = Dropout(dropout1)(x)
x = Dense(dense_filter2, activation='relu')(x)
x = Dropout(dropout2)(x)
x = Dense(dense_filter3, activation='relu')(x)
return Model(input, x)


def compute_accuracy(y_true, y_pred):

pred = y_pred.ravel() < 0.5
return numpy.mean(pred == y_true)


def accuracy(y_true, y_pred):

return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype)))

def process_data():
num_classes = 10
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
input_shape = x_train.shape[1:]

# create training+test positive and negative pairs
digit_indices = [numpy.where(y_train == i)[0] for i in range(num_classes)]
tr_pairs, tr_y = create_pairs(x_train, digit_indices)

digit_indices = [numpy.where(y_test == i)[0] for i in range(num_classes)]
te_pairs, te_y = create_pairs(x_test, digit_indices)
return tr_pairs, tr_y, te_pairs, te_y,input_shape

def data():
tr_pairs, tr_y, te_pairs, te_y,input_shape = process_data()
return tr_pairs, tr_y, te_pairs, te_y,input_shape

def contrastive_loss(y_true, y_pred):

margin = 1
return K.mean(y_true * K.square(y_pred) +
(1 - y_true) * K.square(K.maximum(margin - y_pred, 0)))



def create_model(tr_pairs, tr_y, te_pairs, te_y,input_shape):
epochs = 20
dropout1 = {{uniform(0,1)}}
dropout2 = {{uniform(0,1)}}
dense_filter1 = {{choice([64,128,256])}}
dense_filter2 = {{choice([64,128,256])}}
dense_filter3 = {{choice([64,128,256])}}
# network definition
base_network = create_base_network(input_shape,dense_filter1,dense_filter2,dense_filter3,dropout1,dropout2)

input_a = Input(shape=input_shape)
input_b = Input(shape=input_shape)

# because we re-use the same instance `base_network`,
# the weights of the network
# will be shared across the two branches
processed_a = base_network(input_a)
processed_b = base_network(input_b)

distance = Lambda(euclidean_distance,
output_shape=eucl_dist_output_shape)([processed_a, processed_b])

model = Model([input_a, input_b], distance)

# train
rms = RMSprop()
model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy])
model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y,
batch_size=128,
epochs=epochs,
verbose=1,
validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y))

# compute final accuracy on training and test sets
y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]])
tr_acc = compute_accuracy(tr_y, y_pred)
y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])
te_acc = compute_accuracy(te_y, y_pred)
print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc))
print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))

return {'loss': -te_acc, 'status': STATUS_OK, 'model': model}


if __name__ == '__main__':

tr_pairs, tr_y, te_pairs, te_y,input_shape = data()

best_run, best_model = optim.minimize(model=create_model, data=data,
functions = [process_data,create_base_network,euclidean_distance,contrastive_loss,eucl_dist_output_shape,create_pairs,accuracy,compute_accuracy],
algo=tpe.suggest,max_evals=100,trials=Trials())
print("best model",best_model)
print("best run",best_run)
print("Evalutation of best performing model:")
loss,te_acc = best_model.evaluate([te_pairs[:, 0], te_pairs[:, 1]], te_y)
print("best prediction accuracy on test data %0.2f%%" % (100 * te_acc))

0 comments on commit cb1f61d

Please sign in to comment.