Skip to content

Dacon Image Super Resolution Project Hosted By AI Yangjae hub

Notifications You must be signed in to change notification settings

suhyeok-jang/image-super-resolution

Repository files navigation

👀 양재 허브 인공지능 오픈소스 경진대회 👀

맑은 눈의 광인이 되어 세상을 바라보자!



Team

Name : 맑은 눈의 광인

Members : KUBIG 15기 염윤석, 장수혁, 최민경 / 16기 박민규



Project Descriptions

Link : AI 양재 허브 인공지능 오픈소스 경진대회 (DACON)

[주제]
이미지 초해상화(Image Sper-Resolution)를 위한 AI 알고리즘 개발

[배경]
오픈 소스 이미지 데이터를 활용하여 인공지능 컴퓨터 비전의 '이미지 초해상화' 분야 연구개발

[설명]
품질이 저하된 저해상도 촬영 이미지(512x512)를 고품질의 고해상도 촬영 이미지(2048x2048)로 생성

[평가 산식]
PSNR(Peak Signal-to-Noise Ratio) = $10log_{10}(R^2/MSE)$

  • 생성 혹은 압축된 영상의 화질에 대한 “손실 정보”를 평가
  • 손실이 적을수록(=화질이 좋을 수록) 높은 값



👣 Score(Public)

RRDB+ : 23.40812(38th)



🌐 Environment

Colab Pro+
GPU: A100-SXM4-40GB * 1(Main) , Tesla T4*1(Sub)



🔥 Competition Strategies

1. Patches(for data augmentation)

  • Train patches : original 1640 images → 26240(1640*16) patches (X4 downsampling, non-overlapping)
  • Test patches: original 18 images → 882(18*49) patches (X4 downsampling, overlapping(to remove border artifacts))

2. Data Transform
Non-destructive transformations (not to add or lose the information)

  • Flip
  • Transpose
  • RandomRotate
  • ShiftScaleRotate

3. Training Methods

  • EarlyStopping

    To prevent overfitting
    If validation loss does not improve after given patience(=2), training is earlystopped

  • Fine-tuning with pre-trained model

    pretrained model : RRDB_PSNR_x4.pth(the PSNR-oriented model with high PSNR performance)
    Retraining entire model : Judging that the similarity between DF2K dataset(pretrained model) and our training datset is small


4. Loss Function


5. Learning Scheduler, Optimizer

  • StepLR

    step_size = 3, gamma = 0.5
    Decays the learning rate of each parameter in half once per 3 epochs

  • Adam

6. Post Processing



Main configuration & Hyperparameters

'''

  1. Manuel_seed : 42

  2. Model :

    num_feat : 64 , Channel number of intermediate features.
    growth_channel: 32 , Channels for each growth(dense connection).
    num_block: 23 , number of RRDB blocks.

  3. Dataloader :

    train_batch_size : 4
    test_batch_size: 1
    num_workers: 4

  4. Train :

    epochs: 7
    optim_g: {type: Adam, lr: 1e-4, betas: [0.9, 0.99]}

'''



Code Descriptions

  1. DACON_AISR_TRIAL
  • EDSR, SRGAN, SWINIR
  1. DACON_AISR_BEST
  • RRDB, RRDB+(Self-ensemble)

About

Dacon Image Super Resolution Project Hosted By AI Yangjae hub

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published