Name : 맑은 눈의 광인
Members : KUBIG 15기 염윤석, 장수혁, 최민경 / 16기 박민규
Link : AI 양재 허브 인공지능 오픈소스 경진대회 (DACON)
[주제]
이미지 초해상화(Image Sper-Resolution)를 위한 AI 알고리즘 개발
[배경]
오픈 소스 이미지 데이터를 활용하여 인공지능 컴퓨터 비전의 '이미지 초해상화' 분야 연구개발
[설명]
품질이 저하된 저해상도 촬영 이미지(512x512)를 고품질의 고해상도 촬영 이미지(2048x2048)로 생성
[평가 산식]
PSNR(Peak Signal-to-Noise Ratio) =
- 생성 혹은 압축된 영상의 화질에 대한 “손실 정보”를 평가
- 손실이 적을수록(=화질이 좋을 수록) 높은 값
RRDB+ : 23.40812(38th)
Colab Pro+
GPU: A100-SXM4-40GB * 1(Main) , Tesla T4*1(Sub)
1. Patches(for data augmentation)
- Train patches : original 1640 images → 26240(1640*16) patches (X4 downsampling, non-overlapping)
- Test patches: original 18 images → 882(18*49) patches (X4 downsampling, overlapping(to remove border artifacts))
2. Data Transform
Non-destructive transformations (not to add or lose the information)
- Flip
- Transpose
- RandomRotate
- ShiftScaleRotate
3. Training Methods
- EarlyStopping
To prevent overfitting
If validation loss does not improve after given patience(=2), training is earlystopped - Fine-tuning with pre-trained model
pretrained model : RRDB_PSNR_x4.pth(the PSNR-oriented model with high PSNR performance)
Retraining entire model : Judging that the similarity between DF2K dataset(pretrained model) and our training datset is small
4. Loss Function
- L1 loss + L2 loss (2:1)
L2 loss : PSNR is based on MSE
L1 loss: For better convergence https://arxiv.org/pdf/1707.02921v1.pdf
5. Learning Scheduler, Optimizer
- StepLR
step_size = 3, gamma = 0.5
Decays the learning rate of each parameter in half once per 3 epochs - Adam
6. Post Processing
- Geometric Self-Ensemble https://arxiv.org/pdf/1707.02921v1.pdf
'''
-
Manuel_seed : 42
-
Model :
num_feat : 64 , Channel number of intermediate features.
growth_channel: 32 , Channels for each growth(dense connection).
num_block: 23 , number of RRDB blocks. -
Dataloader :
train_batch_size : 4
test_batch_size: 1
num_workers: 4 -
Train :
epochs: 7
optim_g: {type: Adam, lr: 1e-4, betas: [0.9, 0.99]}
'''
- DACON_AISR_TRIAL
- EDSR, SRGAN, SWINIR
- DACON_AISR_BEST
- RRDB, RRDB+(Self-ensemble)