Skip to content

tangw-seu/DEMIPL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A PyTorch Implementation of DEMIPL

This is a PyTorch implementation of our paper "Disambiguated Attention Embedding for Multi-Instance Partial-Label Learning", (NeurIPS'23).

Authors: Wei Tang, Weijia Zhang, and Min-Ling Zhang

@inproceedings{tang2023demipl,
  author    = {Wei Tang and Weijia Zhang and Min{-}Ling Zhang},
  title     = {Disambiguated Attention Embedding for Multi-Instance Partial-Label Learning},
  booktitle = {Advances in Neural Information Processing Systems 36 (NeurIPS'23), New Orleans, LA},
  year      = {2023}
}

If you are interested in multi-instance partial-label learning, the seminal work MIPLGP may be helpful to you.

@article{tang2023mipl,
  author    = {Wei Tang and Weijia Zhang and Min{-}Ling Zhang},
  title     = {Multi-Instance Partial-Label Learning: Towards Exploiting Dual Inexact Supervision},
  journal   = {Science China Information Sciences},
  year      = {2023}
}

Requirements

numpy==1.21.5
scikit_learn==1.3.1
scipy==1.7.3
torch==1.12.1+cu113

To install the requirement packages, please run the following command:

pip install -r requirements.txt

Datasets

The datasets used in this paper can be found on this link.

Demo

To reproduce the results of MNIST_MIPL dataset in the paper, please run the following command:

CUDA_VISIBLE_DEVICES=0 python main.py --ds MNIST_MIPL --ds_suffix 1 --lr 0.01 --epochs 100 --normalize false --w_entropy_A 0.001
CUDA_VISIBLE_DEVICES=0 python main.py --ds MNIST_MIPL --ds_suffix 2 --lr 0.01 --epochs 100 --normalize false --w_entropy_A 0.001
CUDA_VISIBLE_DEVICES=0 python main.py --ds MNIST_MIPL --ds_suffix 3 --lr 0.05 --epochs 100 --normalize false --w_entropy_A 0.001

This package is only free for academic usage. Have fun!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages