Skip to content

taoaimin/Stacked_Bidirectional_Unidirectional_LSTM

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Deep Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network

For Network-wide Traffic Speed Prediction

Prologue

Normally, we use RNN to characterize the forward dependency of time series data. While, bi-directional RNNs can capture both forward and backward dependencies in time series data. It has been shown that stacked (multi-layer) RNNs/LSTMs work better than one-layer RNN/LSTM in many NLP related applications. It is good to try a combination of bi-directional RNNs and uni-directional RNNs. We find that a neural network with multiple stacked bi-directional LSTMs followed by an uni-directiaonl LSTM works better.

New Progress

We are designing several internal structures in the LSTM cell to overcome the missing values problem in time series data (replacing the masking layer in the following figure), and to make the model to be suitable for graph-structured data.

The original model is implemented by Keras. A newly improved version implemented by PyTorch will soon be released.

Environment

  • Python 3.6.1
  • Keras 2.1.5
  • PyTorch 0.3.0

For more detailed information about the model, you can refer to our paper, referenced at the bottom.

Model Structure

alt text

Data

To run the code, you need to download the loop detector data from my GitHub link: https://github.com/zhiyongc/Seattle-Loop-Data. I'm sorry that the INRIX data can not be shared because of the confidentiality issues.

Cite

Hope our work can benefit your. If you use this code or data in your own workPlease cite our paper: Deep Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction

@article{cui2018deep,
  title={Deep Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction},
  author={Cui, Zhiyong and Ke, Ruimin and Wang, Yinhai},
  journal={arXiv preprint arXiv:1801.02143},
  year={2018}
}

or

@inproceedings{cui2016deep,
  title={Deep Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction},
  author={Cui, Zhiyong and Ke, Ruimin and Wang, Yinhai},
  booktitle={6th International Workshop on Urban Computing (UrbComp 2017)},
  year={2016}
}

About

Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%