forked from pytorch/torchtune
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add QAT support for distributed finetuning (pytorch#980)
- Loading branch information
1 parent
c1c9f30
commit fd7c15f
Showing
9 changed files
with
1,000 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
# Config for multi-device QAT finetuning in qat_distributed.py | ||
# using a Llama2 7B model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Llama-2-7b-hf --output-dir /tmp/Llama-2-7b-hf --hf-token <HF_TOKEN> | ||
# | ||
# To launch on 4 devices, run the following command from root: | ||
# tune run --nnodes 1 --nproc_per_node 4 qat_distributed --config llama2/7B_qat_full | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nnodes 1 --nproc_per_node 4 qat_distributed --config llama2/7B_qat_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
|
||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.llama2.llama2_tokenizer | ||
path: /tmp/Llama-2-7b-hf/tokenizer.model | ||
|
||
# Dataset | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_dataset | ||
seed: null | ||
shuffle: True | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama2.llama2_7b | ||
|
||
checkpointer: | ||
_component_: torchtune.utils.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Llama-2-7b-hf | ||
checkpoint_files: [ | ||
pytorch_model-00001-of-00002.bin, | ||
pytorch_model-00002-of-00002.bin | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Llama-2-7b-hf | ||
model_type: LLAMA2 | ||
resume_from_checkpoint: False | ||
|
||
# Fine-tuning arguments | ||
batch_size: 2 | ||
epochs: 3 | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
lr: 2e-5 | ||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 1 | ||
|
||
# QAT arguments | ||
quantizer: | ||
_component_: torchtune.utils.quantization.Int8DynActInt4WeightQATQuantizer | ||
groupsize: 256 | ||
|
||
# Training env | ||
device: cuda | ||
|
||
# Memory management | ||
enable_activation_checkpointing: True | ||
memory_efficient_fsdp_wrap: False | ||
|
||
# Reduced precision | ||
dtype: bf16 | ||
|
||
# Logging | ||
metric_logger: | ||
_component_: torchtune.utils.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
output_dir: /tmp/alpaca-llama2-finetune | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: False |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
# Config for multi-device QAT finetuning in qat_distributed.py | ||
# using a Llama3 8B Instruct model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Meta-Llama-3-8B-Instruct --output-dir /tmp/Meta-Llama-3-8B-Instruct --hf-token <HF_TOKEN> | ||
# | ||
# To launch on 4 devices, run the following command from root: | ||
# tune run --nproc_per_node 4 qat_distributed --config llama3/8B_qat_full | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nproc_per_node 4 qat_distributed --config llama3/8B_qat_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.llama3.llama3_tokenizer | ||
path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model | ||
|
||
# Dataset | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_dataset | ||
seed: null | ||
shuffle: True | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama3.llama3_8b | ||
|
||
checkpointer: | ||
_component_: torchtune.utils.FullModelMetaCheckpointer | ||
checkpoint_dir: /tmp/Meta-Llama-3-8B-Instruct/original/ | ||
checkpoint_files: [ | ||
consolidated.00.pth | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Meta-Llama-3-8B-Instruct/ | ||
model_type: LLAMA3 | ||
resume_from_checkpoint: False | ||
|
||
# Fine-tuning arguments | ||
batch_size: 2 | ||
epochs: 3 | ||
|
||
# QAT arguments | ||
quantizer: | ||
_component_: torchtune.utils.quantization.Int8DynActInt4WeightQATQuantizer | ||
groupsize: 256 | ||
|
||
optimizer: | ||
_component_: torch.optim.AdamW | ||
lr: 2e-5 | ||
foreach: False | ||
|
||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 1 | ||
|
||
# Training env | ||
device: cuda | ||
|
||
# Memory management | ||
enable_activation_checkpointing: True | ||
memory_efficient_fsdp_wrap: True | ||
|
||
# Reduced precision | ||
dtype: bf16 | ||
|
||
# Logging | ||
metric_logger: | ||
_component_: torchtune.utils.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
output_dir: /tmp/alpaca-llama3-finetune | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: False |
Oops, something went wrong.