Skip to content

Commit

Permalink
Add QAT support for distributed finetuning (pytorch#980)
Browse files Browse the repository at this point in the history
  • Loading branch information
andrewor14 authored Jun 27, 2024
1 parent c1c9f30 commit fd7c15f
Show file tree
Hide file tree
Showing 9 changed files with 1,000 additions and 6 deletions.
76 changes: 76 additions & 0 deletions recipes/configs/llama2/7B_qat_full.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
# Config for multi-device QAT finetuning in qat_distributed.py
# using a Llama2 7B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Llama-2-7b-hf --output-dir /tmp/Llama-2-7b-hf --hf-token <HF_TOKEN>
#
# To launch on 4 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 4 qat_distributed --config llama2/7B_qat_full
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 4 qat_distributed --config llama2/7B_qat_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>


# Tokenizer
tokenizer:
_component_: torchtune.models.llama2.llama2_tokenizer
path: /tmp/Llama-2-7b-hf/tokenizer.model

# Dataset
dataset:
_component_: torchtune.datasets.alpaca_dataset
seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.llama2.llama2_7b

checkpointer:
_component_: torchtune.utils.FullModelHFCheckpointer
checkpoint_dir: /tmp/Llama-2-7b-hf
checkpoint_files: [
pytorch_model-00001-of-00002.bin,
pytorch_model-00002-of-00002.bin
]
recipe_checkpoint: null
output_dir: /tmp/Llama-2-7b-hf
model_type: LLAMA2
resume_from_checkpoint: False

# Fine-tuning arguments
batch_size: 2
epochs: 3
optimizer:
_component_: torch.optim.AdamW
lr: 2e-5
loss:
_component_: torch.nn.CrossEntropyLoss
max_steps_per_epoch: null
gradient_accumulation_steps: 1

# QAT arguments
quantizer:
_component_: torchtune.utils.quantization.Int8DynActInt4WeightQATQuantizer
groupsize: 256

# Training env
device: cuda

# Memory management
enable_activation_checkpointing: True
memory_efficient_fsdp_wrap: False

# Reduced precision
dtype: bf16

# Logging
metric_logger:
_component_: torchtune.utils.metric_logging.DiskLogger
log_dir: ${output_dir}
output_dir: /tmp/alpaca-llama2-finetune
log_every_n_steps: 1
log_peak_memory_stats: False
77 changes: 77 additions & 0 deletions recipes/configs/llama3/8B_qat_full.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# Config for multi-device QAT finetuning in qat_distributed.py
# using a Llama3 8B Instruct model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Meta-Llama-3-8B-Instruct --output-dir /tmp/Meta-Llama-3-8B-Instruct --hf-token <HF_TOKEN>
#
# To launch on 4 devices, run the following command from root:
# tune run --nproc_per_node 4 qat_distributed --config llama3/8B_qat_full
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nproc_per_node 4 qat_distributed --config llama3/8B_qat_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>

# Tokenizer
tokenizer:
_component_: torchtune.models.llama3.llama3_tokenizer
path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model

# Dataset
dataset:
_component_: torchtune.datasets.alpaca_dataset
seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.llama3.llama3_8b

checkpointer:
_component_: torchtune.utils.FullModelMetaCheckpointer
checkpoint_dir: /tmp/Meta-Llama-3-8B-Instruct/original/
checkpoint_files: [
consolidated.00.pth
]
recipe_checkpoint: null
output_dir: /tmp/Meta-Llama-3-8B-Instruct/
model_type: LLAMA3
resume_from_checkpoint: False

# Fine-tuning arguments
batch_size: 2
epochs: 3

# QAT arguments
quantizer:
_component_: torchtune.utils.quantization.Int8DynActInt4WeightQATQuantizer
groupsize: 256

optimizer:
_component_: torch.optim.AdamW
lr: 2e-5
foreach: False

loss:
_component_: torch.nn.CrossEntropyLoss
max_steps_per_epoch: null
gradient_accumulation_steps: 1

# Training env
device: cuda

# Memory management
enable_activation_checkpointing: True
memory_efficient_fsdp_wrap: True

# Reduced precision
dtype: bf16

# Logging
metric_logger:
_component_: torchtune.utils.metric_logging.DiskLogger
log_dir: ${output_dir}
output_dir: /tmp/alpaca-llama3-finetune
log_every_n_steps: 1
log_peak_memory_stats: False
Loading

0 comments on commit fd7c15f

Please sign in to comment.