Skip to content
View tdhock's full-sized avatar

Organizations

@MontrealRUserGroup @Rdatatable @rstats-gsoc @NAU-CS

Block or report tdhock

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
tdhock/README.md

Hi! I have been working on machine learning and statistical software (especially using R/Python/C/C++/JavaScript) since my undergrad in Berkeley Stats (BA 2006), and my PhD in Paris (2012). Since 2024 I work as a Tenured Associate Professor in Université de Sherbrooke, Département d'Informatique, where I direct the LASSO research lab (Learning Algorithms, Statistical Software, Optimization). As the leader of Data Table Ninjas, I also provide consulting services related to R data.table, including big data analysis, machine learning, data visualization, and teaching specialized programming classes related to these subjects. See my web page for complete CV.

I have published 40+ peer-reviewed research papers on machine learning and statistical software. My research emphasizes fast, accurate, and interpretable algorithms for learning from large data, using continuous optimization (clustering, regression, ranking, classification) and discrete optimization (changepoint detection, dynamic programming). The main application domains for these algorithms are genomics, neuroscience, medicine, microbiome, cybersecurity, robotics, satellite/sonar imagery, climate/carbon modeling. See my Publications page for more info.

I have mentored 30+ students in research projects, as well as another 30+ open-source software contributors with R Project in Google Summer of Code. See my Teaching page for a list of students mentored.

I think reproducible research is important, so in addition to every research paper, I also provide

Below is a summary of selected software that I have authored or co-authored.

Supervised machine learning

  • penaltyLearning: supervised learning algorithms for predicting penalty values in labeled optimal change-point problems.
  • aum: Area Under Min(FP,FN), a new loss function for imbalanced classification and supervised changepoint detection.
  • mlr3resampling: new cross-validation algorithms for mlr3 framework in R.
  • mmit: Max Margin Interval Trees, decision tree learning for regression with interval-censored outputs.
  • rankSVMcompare: support vector machine for learning ranking and comparison functions from labeled pairs of observations.
  • WeightedROC: efficient computation of ROC curves and AUC for binary classification data sets with weights.

Unsupervised learning

  • clusterpath: convex optimization algorithms for clustering, using fusion penalties.

Change-point detection

  • binsegRcpp: efficient implementation of the classic binary segmentation heuristic algorithm for change-point detection in sequential data.
  • LOPART: Labeled Optimal Partitioning, quadratic time dynamic programming algorithm for optimal change-point detection in labeled data sequences.
  • FLOPART: Functional Labeled Optimal Partitioning, log-linear time dynamic programming algorithm for optimal change-point detection in labeled count data sequences.
  • gfpop: Generalized Functional Pruning Optimal Partitioning, log-linear time dynamic programming algorithm for optimal change-point detection using a graph to define constraints on adjacent segment parameters.
  • PeakSegDisk: disk-based dynamic programming algorithm, which uses log-linear time and log memory, for up-down constrained change-point detection in count data sequences.
  • PeakSegJoint: heuristic algorithm for detecting a single common peak in several aligned count data sequences.

Software testing and R package development

  • atime: asymptotic time complexity estimation, comparative benchmarking, performance testing.
  • RcppDeepState: fuzz testing compiled code in Rcpp packages.
  • inlinedocs: documentation generation for R packages.

Data visualization

  • animint2: animated, interactive grammar of graphics.
  • directlabels: automatic direct label placement for multi-color plots.

Data reading, manipulation, analysis

  • nc: named capture regular expressions in R.
  • data.table: efficient data reading, manipulation and analysis in R.

Pinned Loading

  1. directlabels Public

    Direct labels for multicolor plots in lattice or ggplot2

    R 83 16

  2. animint/animint2 Public

    Animated interactive grammar of graphics

    R 66 25

  3. nc Public

    Named capture regular expressions for text parsing and data reshaping

    R 18 2

  4. Rdatatable/data.table Public

    R's data.table package extends data.frame:

    R 3.7k 1k

  5. atime Public

    Asymptotic timing

    R 7 2

  6. mlr3resampling Public

    Resampling algorithms for mlr3 framework in R

    R 3 1

1,545 contributions in the last year

Contribution Graph
Day of Week April May June July August September October November December January February March April
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Less
No contributions.
Low contributions.
Medium-low contributions.
Medium-high contributions.
High contributions.
More

Contribution activity

April 2025

Created 4 repositories

Created a pull request in mlr-org/mlr3torch that received 8 comments

Convert single column binary predictions to two

Closes #374

+7 −0 lines changed 8 comments
Opened 4 other pull requests in 3 repositories
Reviewed 5 pull requests in 2 repositories

Created an issue in mlr-org/mlr3 that received 6 comments

could benchmark_grid error for learners with different predict_type?

Hi @sebffischer I am using benchmark_grid which I find very useful in general for ML experiments to compare prediction accuracy of different learni…

6 comments
Loading