This repository has been archived by the owner on Aug 15, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 950
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
FEATURE Add tf.booleanMask op. Feature requested in [tensorflow/tfjs#380](tensorflow/tfjs#380). Reference: * [tf.boolean_mask documentation](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/boolean_mask?hl=en) * [tf.boolean_mask tensorflow python implementation](https://github.com/tensorflow/tensorflow/blob/r2.0/tensorflow/python/ops/array_ops.py#L1274)
- Loading branch information
Showing
4 changed files
with
208 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
/** | ||
* @license | ||
* Copyright 2018 Google Inc. All Rights Reserved. | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
* ============================================================================= | ||
*/ | ||
|
||
import {Tensor} from '../tensor'; | ||
import {convertToTensor} from '../tensor_util_env'; | ||
import {TensorLike} from '../types'; | ||
import * as util from '../util'; | ||
|
||
import {whereAsync} from './logical_ops'; | ||
import {gather} from './segment_ops'; | ||
|
||
/** | ||
* Apply boolean mask to tensor. | ||
* | ||
* ```js | ||
* const tensor = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); | ||
* const mask = tf.tensor1d([1, 0, 1], 'bool'); | ||
* const result = await tf.booleanMask(tensor, mask); | ||
* result.print(); | ||
* ``` | ||
* | ||
* @param N-D tensor. | ||
* @param mask K-D boolean tensor, K <= N and K must be known statically. | ||
* @param axis A 0-D int Tensor representing the axis in tensor to mask from. | ||
* By default, axis is 0 which will mask from the first dimension. | ||
* Otherwise K + axis <= N. | ||
*/ | ||
/** @doc {heading: 'Tensors', subheading: 'Slicing and Joining'} */ | ||
async function booleanMask_( | ||
tensor: Tensor|TensorLike, mask: Tensor|TensorLike, | ||
axis?: number): Promise<Tensor> { | ||
const $tensor = convertToTensor(tensor, 'tensor', 'boolMask'); | ||
const $mask = convertToTensor(mask, 'mask', 'boolMask', 'bool'); | ||
|
||
const axisFrom = axis == null ? 0 : axis; | ||
const maskDim = $mask.rank; | ||
const tensorShape = $tensor.shape; | ||
|
||
util.assert(maskDim > 0, () => 'mask cannot be scalar'); | ||
util.assertShapesMatch( | ||
tensorShape.slice(axisFrom, axisFrom + maskDim), $mask.shape, | ||
`mask's shape must match the first K dimensions of tensor's shape,`); | ||
|
||
let leadingSize = 1; | ||
for (let i = axisFrom; i < axisFrom + maskDim; i++) { | ||
leadingSize *= tensorShape[i]; | ||
} | ||
const targetTensorShape = | ||
tensorShape.slice(0, axisFrom) | ||
.concat([leadingSize], tensorShape.slice(axisFrom + maskDim)); | ||
const reshapedTensor = $tensor.reshape(targetTensorShape); | ||
const reshapedMask = $mask.reshape([-1]); | ||
const positivePositions = await whereAsync(reshapedMask); | ||
const indices = positivePositions.squeeze([1]); | ||
|
||
const res = gather(reshapedTensor, indices, axisFrom); | ||
|
||
// Ensure no memory leak. | ||
if (tensor !== $tensor) { | ||
$tensor.dispose(); | ||
} | ||
if (mask !== $mask) { | ||
$mask.dispose(); | ||
} | ||
indices.dispose(); | ||
reshapedTensor.dispose(); | ||
reshapedMask.dispose(); | ||
positivePositions.dispose(); | ||
|
||
return res; | ||
} | ||
|
||
export const booleanMask = booleanMask_; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
/** | ||
* @license | ||
* Copyright 2018 Google Inc. All Rights Reserved. | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
* ============================================================================= | ||
*/ | ||
|
||
import * as tf from '../index'; | ||
import {ALL_ENVS, describeWithFlags} from '../jasmine_util'; | ||
import {Tensor} from '../tensor'; | ||
import {expectArraysClose} from '../test_util'; | ||
|
||
describeWithFlags('booleanMask', ALL_ENVS, () => { | ||
it('1d array, 1d mask, default axis', async () => { | ||
const array = tf.tensor1d([1, 2, 3]); | ||
const mask = tf.tensor1d([1, 0, 1], 'bool'); | ||
const result = await tf.booleanMask(array, mask); | ||
expect(result.shape).toEqual([2]); | ||
expect(result.dtype).toBe('float32'); | ||
expectArraysClose(await result.data(), [1, 3]); | ||
}); | ||
|
||
it('2d array, 1d mask, default axis', async () => { | ||
const array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); | ||
const mask = tf.tensor1d([1, 0, 1], 'bool'); | ||
const result = await tf.booleanMask(array, mask); | ||
expect(result.shape).toEqual([2, 2]); | ||
expect(result.dtype).toBe('float32'); | ||
expectArraysClose(await result.data(), [1, 2, 5, 6]); | ||
}); | ||
|
||
it('2d array, 2d mask, default axis', async () => { | ||
const array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); | ||
const mask = tf.tensor2d([1, 0, 1, 0, 1, 0], [3, 2], 'bool'); | ||
const result = await tf.booleanMask(array, mask); | ||
expect(result.shape).toEqual([3]); | ||
expect(result.dtype).toBe('float32'); | ||
expectArraysClose(await result.data(), [1, 3, 5]); | ||
}); | ||
|
||
it('2d array, 1d mask, axis=1', async () => { | ||
const array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); | ||
const mask = tf.tensor1d([0, 1], 'bool'); | ||
const axis = 1; | ||
const result = await tf.booleanMask(array, mask, axis); | ||
expect(result.shape).toEqual([3, 1]); | ||
expect(result.dtype).toBe('float32'); | ||
expectArraysClose(await result.data(), [2, 4, 6]); | ||
}); | ||
|
||
it('accepts tensor-like object as array or mask', async () => { | ||
const array = [[1, 2], [3, 4], [5, 6]]; | ||
const mask = [1, 0, 1]; | ||
const result = await tf.booleanMask(array, mask); | ||
expect(result.shape).toEqual([2, 2]); | ||
expect(result.dtype).toBe('float32'); | ||
expectArraysClose(await result.data(), [1, 2, 5, 6]); | ||
}); | ||
|
||
it('ensure no memory leak', async () => { | ||
const numTensorsBefore = tf.memory().numTensors; | ||
|
||
const array = tf.tensor1d([1, 2, 3]); | ||
const mask = tf.tensor1d([1, 0, 1], 'bool'); | ||
let resultPromise: Promise<Tensor> = null; | ||
|
||
tf.tidy(() => { | ||
resultPromise = tf.booleanMask(array, mask); | ||
}); | ||
|
||
const result = await resultPromise; | ||
expect(result.shape).toEqual([2]); | ||
expect(result.dtype).toBe('float32'); | ||
expectArraysClose(await result.data(), [1, 3]); | ||
array.dispose(); | ||
mask.dispose(); | ||
result.dispose(); | ||
|
||
const numTensorsAfter = tf.memory().numTensors; | ||
expect(numTensorsAfter).toBe(numTensorsBefore); | ||
}); | ||
|
||
it('should throw if mask is scalar', async () => { | ||
const array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); | ||
const mask = tf.scalar(1, 'bool'); | ||
let errorMessage = 'No error thrown.'; | ||
try { | ||
await tf.booleanMask(array, mask); | ||
} catch (error) { | ||
errorMessage = error.message; | ||
} | ||
expect(errorMessage).toBe('mask cannot be scalar'); | ||
}); | ||
|
||
it('should throw if array and mask shape miss match', async () => { | ||
const array = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]); | ||
const mask = tf.tensor2d([1, 0], [1, 2], 'bool'); | ||
let errorMessage = 'No error thrown.'; | ||
try { | ||
await tf.booleanMask(array, mask); | ||
} catch (error) { | ||
errorMessage = error.message; | ||
} | ||
expect(errorMessage) | ||
.toBe( | ||
`mask's shape must match the first K ` + | ||
`dimensions of tensor's shape, Shapes 3,2 and 1,2 must match`); | ||
}); | ||
}); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters