Skip to content

thanhpv2102/SV-Pipeline.COCOSDA2022.VLSP2022

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VLSP 2022 & O-COCOSDA 2022 - YouTube data pipeline for crawling and pre-processing

Dependencies

Requirements:

pip install -r requirements.txt

Data Crawling

Crawl MP4 video from Youtube and convert to WAV:

python crawl.py --url_playlist=<URL to YouTube playlist> --save_dir=<Directory folder to save WAV>

Data Pre-processing

First we split the audio files into smaller files using Silero Voice Activity Detection (VAD):

python silero-VAD.py --folder_file_wav=<Path to WAV folder> --save_dir=<Directory folder to save new WAV>

After performing VAD, compute the cosine similarity of audio pairs:

python cosine_pair.py --wav_dir=<Path to VAD-ed WAV folder> --file_csv=<CSV to save results>

After getting the similarity scores, irrelevant / noisy audio files have to be removed. For each language, we have to listen to some audio files to define a threshold. All audio files having the threshold value below the pre-defined threshold will be removed:

python remove.py --file_csv=<CSV path> --thresh_hold=<Threshold value from 0.2 to 0.5>

After running the above command, the irrelevant audio files in the VAD-ed wav folder will be removed.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%