Skip to content

Latest commit

 

History

History
87 lines (73 loc) · 2.46 KB

README.md

File metadata and controls

87 lines (73 loc) · 2.46 KB

Image Retrieval System

This project implements an image retrieval system using various techniques, from basic similarity measures to advanced deep learning approaches.

Table of Contents

Introduction

This image retrieval system offers implementations ranging from traditional similarity measures to state-of-the-art deep learning techniques. It aims to efficiently retrieve relevant images from a dataset based on a query image.

Features

  • Multiple similarity measures: L1, L2, Cosine Similarity, Correlation Coefficient
  • Deep learning-based feature extraction using CLIP
  • Vector database integration for efficient retrieval
  • Jupyter notebooks for method comparisons
  • Configurable data loading and result visualization

Project Structure

IMAGE-RETRIEVAL/
├── github/
│   └── workflows/
│       └── build.yml
├── assets/
├── data/
├── notebooks/
│   ├── embedding_method.ipynb
│   ├── traditional_method.ipynb
│   └── vector_database_method.ipynb
├── source/
│   ├── __pycache__/
│   ├── config.py
│   ├── data_loader.py
│   ├── plot_results.py
│   ├── retrieval.py
│   └── similarity.py
├── .gitignore
├── LICENSE
├── README.md
├── main.py
├── requirements.txt
└── sonar-project.properties

Installation

  1. Clone the repository:

    git clone https://github.com/tiendat25052004/image-retrieval
    cd image-retrieval
    
  2. Install necessary libraries:

    pip install -r requirements.txt
    

Usage

Run the main script:

python main.py

Examples:

  • L1 Distance: alt text
  • L2 Distance: alt text
  • Cosine Similarity: alt text
  • Correlation Coefficient: alt text
  1. For advanced methods, refer to the Jupyter notebooks in the notebooks/ directory. Examples:
  • Vector Database with Cosine Similarity: alt text

Contributing

Contributions are welcome. Please fork the repository and submit a pull request with your changes.