This project implements an image retrieval system using various techniques, from basic similarity measures to advanced deep learning approaches.
This image retrieval system offers implementations ranging from traditional similarity measures to state-of-the-art deep learning techniques. It aims to efficiently retrieve relevant images from a dataset based on a query image.
- Multiple similarity measures: L1, L2, Cosine Similarity, Correlation Coefficient
- Deep learning-based feature extraction using CLIP
- Vector database integration for efficient retrieval
- Jupyter notebooks for method comparisons
- Configurable data loading and result visualization
IMAGE-RETRIEVAL/
├── github/
│ └── workflows/
│ └── build.yml
├── assets/
├── data/
├── notebooks/
│ ├── embedding_method.ipynb
│ ├── traditional_method.ipynb
│ └── vector_database_method.ipynb
├── source/
│ ├── __pycache__/
│ ├── config.py
│ ├── data_loader.py
│ ├── plot_results.py
│ ├── retrieval.py
│ └── similarity.py
├── .gitignore
├── LICENSE
├── README.md
├── main.py
├── requirements.txt
└── sonar-project.properties
-
Clone the repository:
git clone https://github.com/tiendat25052004/image-retrieval cd image-retrieval
-
Install necessary libraries:
pip install -r requirements.txt
Run the main script:
python main.py
Examples:
- For advanced methods, refer to the Jupyter notebooks in the
notebooks/
directory. Examples:
Contributions are welcome. Please fork the repository and submit a pull request with your changes.