Skip to content

tienluongngoc/yolov5_triton_inference_server

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

YOLOV5 Triton Inferece Server Using Tensorrt

First of all, I would like to thank wang-xinyu, isarsoft, ultralytics. My repo was heavily based on both of these repositories.
This repo implemented YOLOV5 based on Tensorrt engine and Triton Inference Server

How to run

Dowload docker image to create engine file

docker pull tienln/tensorrt:8.0.3_opencv 
docker pull tienln/ubuntu:18.04_conda
docker pull nvcr.io/nvidia/tritonserver:21.09-py3

Clone code base from git

Open new terminal

cd yourworkingdirectoryhere  
git clone -b v5.0 https://github.com/ultralytics/yolov5.git
git clone -b yolov5-v5.0 https://github.com/wang-xinyu/tensorrtx.git

Create *.wts file

Open new terminal

cd yourworkingdirectoryhere  
cp tensorrtx/yolov5/gen_wts.py yolov5  
cd yolov5  
docker run -it --rm --gpus all -v $PWD:/yolov5 tienln/ubuntu:18.04_conda /bin/bash  
cd /yolov5  
conda activate yolov5  
python gen_wts.py -w yolov5s.pt -o yolov5s.wts

Create engine (TRT *.engine) engine file

Open new terminal

cd yourworkingdirectoryhere 
cp yolov5/yolov5s.wts tensorrtx/yolov5
cd tensorrtx/yolov5  
docker run -it --rm --gpus all -v $PWD:/yolov5 tienln/tensorrt:8.0.3_opencv /bin/bash   
cd /yolov5
mkdir build  
cd build   
cmake ..  
make -j16  
./yolov5 -s ../yolov5s.wts ../yolov5s.engine s  

Create Triton Inference Server

Open new terminal

cd yourworkingdirectoryhere  
mkdir -p triton_deploy/models/yolov5/1/  
mkdir triton_deploy/plugins  
cp tensorrtx/yolov5/yolov5s.engine triton_deploy/models/yolov5/1/model.plan  
cp tensorrtx/yolov5/build/libmyplugins.so triton_deploy/plugins/libmyplugins.so  

Run Triron

docker run \
--gpus all \
--rm \
-p9000:8000 -p9001:8001 -p9002:8002 \
-v $(pwd)/triton_deploy/models:/models \
-v $(pwd)/triton_deploy/plugins:/plugins \
--env LD_PRELOAD=/plugins/libmyplugins.so \
nvcr.io/nvidia/tritonserver:21.09-py3 tritonserver \
--model-repository=/models \
--strict-model-config=false \
--log-verbose 1

Run in client

Open new terminal

cd yourworkingdirectoryhere   
cd clients/yolov5
docker run -it --rm --gpus all --network host -v $PWD:/client tienln/ubuntu:18.04_conda /bin/bash  
conda activate yolov5  
pip install tritonclient  
cd /client
python client.py -o data/dog_result.jpg image data/dog.jpg  

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published