Skip to content

trangvu/PrimeKG

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PrimeKG


website GitHub Repo stars GitHub Repo forks License: MIT

Lab Website | Nature Publication | Harvard Dataverse

TL;DR

Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integrates 20 high-quality biomedical resources to describe 17,080 diseases with 4,050,249 relationships representing ten major biological scales. We accompany PrimeKG’s graph structure with text descriptions of clinical guidelines for drugs and diseases to enable multimodal analyses. Download this csv file to get started!

Updates

  • [Feb 2023] PrimeKG is published in Nature Scientific Data.
  • [Jun 2022] PrimeKG crosses 5,000 downloads on Harvard Dataverse!
  • [Apr 2022] PrimeKG is live on bioRxiv and Harvard Dataverse!

Unique Features of PrimeKG

  • Diverse coverage of diseases: PrimeKG contains over 17,000 diseases including rare dieases. Disease nodes in PrimeKG are densely connected to other nodes in the graph and have been optimized for clinical relevance in downstream precision medicine tasks.
  • Heterogeneous knowledge graph: PrimeKG contains over 100,000 nodes distributed over various biological scales as depicted below. PrimeKG also contains over 4 million relationships between these nodes distributed over 29 types of edges.
  • Multimodal integration of clinical knowledge: Disease and drug nodes in PrimeKG are augmented with clinical descriptors that come from medical authorities such as Mayo Clinic, Orphanet, Drug Bank, and so forth.
  • Ready-to-use datasets: PrimeKG is minimally dependent on external packages. Our knowledge graph can be retrieved in a ready-to-use format from Harvard Dataverse.
  • Data functions: PrimeKG provides extensive data functions, including processors for primary resources and scripts to build an updated knowledge graph.

overview

PrimeKG-example

Environment setup

Using pip

To install the dependencies required to run the PrimeKG code, use pip:

pip install -r requirements.txt

Or use conda

conda env create --name PrimeKG --file=environments.yml

Using PrimeKG

For a quick start in Python, you can download the raw data files in .csv format directly from Harvard Dataverse or load PrimeKG using the following community dataloaders.

Getting started in Python

Download PrimeKG from Harvard Dataverse using the following bash command. You can replace kg.csv with any file path.

wget -O kg.csv https://dataverse.harvard.edu/api/access/datafile/6180620

You can use the following code to load PrimeKG and visualize its data.

import pandas as pd
primekg = pd.read_csv('kg.csv', low_memory=False)
primekg.query('y_type=="disease"|x_type=="disease"')

Dataloader: Therapeutics Data Commons

website | docs

pip install PyTDC
from tdc.resource import PrimeKG
data = PrimeKG(path = './data')
drug_feature = data.get_features(feature_type = 'drug')
data.to_nx()
data.get_node_list(type = 'disease')

Dataloader: PyKEEN

website | docs

pip install pykeen
import pykeen.datasets
pykeen.datasets.has_dataset('primekg')

Building an updated PrimeKG

Downloading primary data resources

All persistent identifiers and weblinks to download the 20 primary data resources used to build PrimeKG are systematically provided in the Data Records section of our article. We have also mentioned the exact filenames that were downloaded from each resource for easy corroboration.

Curating primary data resources

We provide the scripts used to process all primary data resources and the names of the resulting output files generated by those scripts. We would be happy to share the intermediate processing datasets that were used to create PrimeKG on request.

Database Processing scripts Expected script output
Bgee bgee.py anatomy_gene.csv
Comparative Toxicogenomics Database ctd.py exposure_data.csv
DisGeNET - curated_gene_disease_associations.tsv
DrugBank drugbank_drug_drug.py drug_drug.csv
DrugBank parsexml_drugbank.ipynb, Parsed_feature.ipynb 12 drug feature files
DrugBank drugbank_drug_protein.py drug_protein.csv
Drug Central drugcentral_queries.txt drug_disease.csv
Drug Central drugcentral_feature.Rmd dc_features.csv
Entrez Gene ncbigene.py protein_go_associations.csv
Gene Ontology go.py go_terms_info.csv, go_terms_relations.csv
Human Phenotype Ontology hpo.py, hpo_obo_parser.py hp_terms.csv, hp_parents.csv, hp_references.csv
Human Phenotype Ontology hpoa.py disease_phenotype_pos.csv, disease_phenotype_neg.csv
MONDO mondo.py, mondo_obo_parser.py mondo_terms.csv, mondo_parents.csv, mondo_references.csv, mondo_subsets.csv, mondo_definitions.csv
Reactome reactome.py reactome_ncbi.csv, reactome_terms.csv, reactome_relations.csv
SIDER sider.py sider.csv
UBERON uberon.py uberon_terms.csv, uberon_rels.csv, uberon_is_a.csv
UMLS umls.py, map_umls_mondo.py umls_mondo.csv
UMLS umls.ipynb umls_def_disorder_2021.csv, umls_def_disease_2021.csv

Harmonizing datasets into PrimeKG

The code to harmonize datasets and construct PrimeKG is available at build_graph.ipynb. Simply run this jupyter notebook in order to construct the knowledge graph from the outputs of the processing files mentioned above. This jupyter notebook produces all three versions of PrimeKG, kg_raw.csv, kg_giant.csv, and the complete version kg.csv.

Feature extraction

The code required to engineer features can be found at engineer_features.ipynb and mapping_mayo.ipynb.

Cite Us

If you find PrimeKG useful, cite our work:

@article{chandak2022building,
  title={Building a knowledge graph to enable precision medicine},
  author={Chandak, Payal and Huang, Kexin and Zitnik, Marinka},
  journal={Nature Scientific Data},
  doi={https://doi.org/10.1038/s41597-023-01960-3},
  URL={https://www.nature.com/articles/s41597-023-01960-3},
  year={2023}
}

Data Server

PrimeKG is hosted on Harvard Dataverse with the following persistent identifier https://doi.org/10.7910/DVN/IXA7BM. When Dataverse is under maintenance, PrimeKG datasets cannot be retrieved. That happens rarely; please check the status on the Dataverse website.

License

PrimeKG codebase is under MIT license. For individual dataset usage, please refer to the dataset license found in the website.

About

Precision Medicine Knowledge Graph (PrimeKG)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 87.3%
  • Python 12.7%