A Fitting, Scoring and Predicting Toolkit for Transformer Series Models.
transformers_sklearn
aims at bringing Transformer
series models to non-specialists.
- pandas https://pandas.pydata.org/
- pytorch https://pytorch.org/
- transformers https://github.com/huggingface/transformers
- scikit-learn https://scikit-learn.org/stable/
transformers_sklearn
wrap the powerful APIs of transformers
into three
class
. They are BERTologyClassifier
for classification task, BERTologyNERClassifier
for name entity recognition(NER) task and BERTologyRegressor
for regression task.
Within each class
, there are three methods, which are fit
for fine-tuning
the pre-trained models downloaded from community, score
for scoring the performance of
fine-tuned model, and predict
for predicting the labels of given datasets.
fit
and score
methods accept two parameters, X
and y
. The type of X
and y
could be list
, ndarray
and DataFrame
. predict
only need X
.
git clone https://github.com/trueto/transformers_sklearn
cd transformers_sklearn
pip install .
Fine-tuning and scoring BERT model on MRPC corpus The whole code is as following:
import pandas as pd
from transformers_sklearn import BERTologyClassifier
if __name__ == '__main__':
## 1. preparing X,y
train_df = pd.read_csv('datasets/mrpc/train.txt',sep='\t',names=['label','id1','id2','s1','s2'])
X_train = pd.concat([train_df['s1'],train_df['s2']],axis=1)
y_train = train_df['label']
test_df = pd.read_csv('datasets/mrpc/test.txt', sep='\t', names=['label', 'id1', 'id2', 's1', 's2'])
X_test = pd.concat([test_df['s1'], test_df['s2']], axis=1)
y_test = test_df['label']
## 2. customize the model
cls = BERTologyClassifier(
model_type='bert',
model_name_or_path='bert-base-cased',
data_dir='ts_data/mrpc',
output_dir='results/mrpc',
num_train_epochs=3,
learning_rate=5e-5
)
## 3. fit
cls.fit(X_train,y_train)
## 4. score
report = cls.score(X_test,y_test)
with open('mrpc.txt','w',encoding='utf8') as f:
f.write(report)
Running code above, the following result will be returned:
***** Eval results 50 *****acc = 0.7360406091370558
acc_and_f1 = 0.7810637828293975
f1 = 0.8260869565217391
***** Eval results 100 *****acc = 0.6802030456852792
acc_and_f1 = 0.707748581666169
f1 = 0.7352941176470589
***** Eval results 150 *****acc = 0.8121827411167513
acc_and_f1 = 0.8418552594472646
f1 = 0.8715277777777778
***** Eval results 200 *****acc = 0.817258883248731
acc_and_f1 = 0.8452491599342247
f1 = 0.8732394366197184
***** Eval results 250 *****acc = 0.8096446700507615
acc_and_f1 = 0.8367642588003353
f1 = 0.8638838475499092
***** Eval results 300 *****acc = 0.8121827411167513
acc_and_f1 = 0.840488533678943
f1 = 0.8687943262411348
Fine-tuning and scoring BERT model on LCQMC corpus The whole code is as following:
import pandas as pd
from transformers_sklearn import BERTologyClassifier
from sklearn.metrics import classification_report
if __name__ == '__main__':
## 1. preparing X,y
train_df = pd.read_csv('datasets/lcqmc/train.tsv',sep='\t',names=['s1','s2','label'])
X_train = pd.concat([train_df['s1'],train_df['s2']],axis=1)
y_train = train_df['label']
dev_df = pd.read_csv('datasets/lcqmc/dev.tsv', sep='\t', names=['s1', 's2','label'])
X_dev = pd.concat([dev_df['s1'], dev_df['s2']], axis=1)
y_dev = dev_df['label']
test_df = pd.read_csv('datasets/lcqmc/test.tsv', sep='\t', names=['s1', 's2', 'label'])
X_test = pd.concat([test_df['s1'], test_df['s2']], axis=1)
y_test = test_df['label']
## 2. customize the model
cls = BERTologyClassifier(
model_type='bert',
model_name_or_path='bert-base-chinese',
data_dir='ts_data/lcqmc',
output_dir='results/lcqmc',
num_train_epochs=3,
learning_rate=5e-5
)
#
## 3. fit
cls.fit(X_train,y_train)
#
## 4. score
report = cls.score(X_dev,y_dev)
with open('lcqmc.txt','w',encoding='utf8') as f:
f.write(report)
## 5. predict
y_pred = cls.predict(X_test)
test_report = classification_report(y_test,y_pred,digits=4)
with open('lcqmc_test.txt','w',encoding='utf8') as f:
f.write(test_report)
Running code above, the following result will be returned:
precision recall f1-score support
0 0.8919 0.8777 0.8848 4400
1 0.8797 0.8937 0.8866 4402
accuracy 0.8857 8802
macro avg 0.8858 0.8857 0.8857 8802
weighted avg 0.8858 0.8857 0.8857 8802
Fine-tuning and scoring BERT model on GMBNER corpus The whole code is as following:
import pandas as pd
from sklearn.model_selection import train_test_split
from transformers_sklearn import BERTologyNERClassifer
if __name__ == '__main__':
data_df = pd.read_csv('datasets/gmbner/ner_dataset.csv',encoding="utf8")
data_df.fillna(method="ffill",inplace=True)
value_counts = data_df['Tag'].value_counts()
label_list = list(value_counts.to_dict().keys())
# ## 1. preparing datasets
X = []
y = []
for label, batch_df in data_df.groupby(by='Sentence #',sort=False):
words = batch_df['Word'].tolist()
labels = batch_df['Tag'].tolist()
assert len(words) == len(labels)
X.append(words)
y.append(labels)
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.1,random_state=520)
## 2. customize model
ner = BERTologyNERClassifer(
labels=label_list,
model_type='bert',
model_name_or_path='bert-base-cased',
data_dir='ts_data/gmbner',
output_dir='results/gmbner',
num_train_epochs=3,
learning_rate=5e-5,
logging_steps=50,
save_steps=50,
overwrite_output_dir=True
)
#
## 3. fit
ner.fit(X_train, y_train)
# # # #
## 4. score
report = ner.score(X_test, y_test)
with open('gmbner.txt', 'w', encoding='utf8') as f:
f.write(report)
Fine-tuning and scoring BERT model on MSRANER corpus The whole code is as following:
import pandas as pd
from transformers_sklearn import BERTologyNERClassifer
tag_dict = {
'o': 'O',
'nr': 'Per',
'ns': 'Adr',
'nt': 'Org'
}
def get_X_y(file_path):
words_list = []
labels_list = []
with open(file_path,'r', encoding='utf8') as f:
for line in f.readlines():
line = line.strip()
words = []
labels = []
for sequence in line.split(' '):
tokens = sequence.split('/')[0]
tag = sequence.split('/')[-1]
tlen = len(tokens)
if tag == 'o':
labels = labels + ['O'] * tlen
else:
labels = labels + ['B-' + tag_dict[tag]] + (tlen - 1) * ['I-' + tag_dict[tag]]
assert len(words) == len(labels)
words_list.append(words)
labels_list.append(labels)
return words_list,labels_list
if __name__ == '__main__':
## 1. preparing X,y
X_train, y_train = get_X_y('datasets/msraner/train.txt')
X_test, y_test = get_X_y('datasets/msraner/test.txt')
## 2. customize model
ner = BERTologyNERClassifer(
model_type='bert',
model_name_or_path='bert-base-chinese',
data_dir='ts_data/msraner',
output_dir='results/msraner',
num_train_epochs=3,
learning_rate=5e-5
)
## 3. fit
ner.fit(X_train, y_train)
## 4. score
report = ner.score(X_test,y_test)
with open('msraner.txt','w',encoding='utf8') as f:
f.write(report)
Fine-tuning and scoring BERT model on STS-B corpus The whole code is as following:
import pandas as pd
from transformers_sklearn import BERTologyRegressor
if __name__ == '__main__':
## 1. preparing X,y
train_df = pd.read_csv('datasets/sts-b/train.tsv',sep='\t')
X_train = pd.concat([train_df['sentence1'],train_df['sentence2']],axis=1)
y_train = train_df['score']
dev_df = pd.read_csv('datasets/sts-b/dev.tsv', sep='\t')
X_dev = pd.concat([dev_df['sentence1'], dev_df['sentence2']], axis=1)
y_dev = dev_df['score']
test_df = pd.read_csv('datasets/sts-b/test.tsv', sep='\t')
X_test = pd.concat([test_df['sentence1'], test_df['sentence2']], axis=1)
## 2. customize the model
cls = BERTologyRegressor(
model_type='bert',
model_name_or_path='bert-base-cased',
data_dir='ts_data/sts-b',
output_dir='results/sts-b',
num_train_epochs=3,
learning_rate=5e-5
)
#
## 3. fit
cls.fit(X_train,y_train)
#
## 4. score
report = cls.score(X_dev,y_dev)
with open('sts-b.txt','w',encoding='utf8') as f:
f.write(report)
## 5. predict
y_pred = cls.predict(X_test)
temp_df = X_test.copy()
temp_df['score'] = y_pred
temp_df.to_csv('sts-b.tsv',index=False)