forked from VIPL-SLP/XV-SLR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_single_depth.yaml
73 lines (66 loc) · 1.5 KB
/
test_single_depth.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
feeder: feeder.dataloader_joint.JointFeeder
phase: test
num_epoch: 40
work_dir: ./work_dir/test_single_depth
batch_size: 16
random_seed: 1234
test_batch_size: 16
num_worker: 4
device: 0
log_interval: 100
eval_interval: 1
save_interval: 5
load_weights: './weights/single_depth.pt'
optimizer_args:
optimizer: Adam
learning_rate:
default: 0.00001
head: 0.0001
optim_args:
betas: [0.9, 0.998]
weight_decay: 0.00001
scheduler_type: MultiStepLR
scheduler_args:
milestones: [20, 35]
start_epoch: 0
feeder_args:
train:
input_list_file: ./data/train_self.json
num_frames: 32
data_type: ['d_features']
val:
input_list_file: ./data/val_self.json
num_frames: 32
data_type: ['d_features']
# test only used for generate submission
test:
num_frames: 32
data_type: ['d_features']
kps_config: &kps_path ./configs/kps/best_kps_config.yaml
model: modules.islr_model.ISLRModel
model_args:
visual_backbone_args:
depth:
type: vit_base_patch16_224
stride: 8
head_args:
classify:
type: ClassifyHead
in_dim: 768
# specify the feat used for classification
feat_type: depth
norm_classifier: True
norm_scale: 32
class_num: 1000 # this will be overwrited by len(gloss_dict)
temporal_arg:
type: Normal
use_loc_loss: True
loss_weight:
classify: 1.0
# use which head for prediction
pred_head: classify
temporal_arg:
type: Normal
use_loc_loss: true
aug_poss:
osxposs: 0.3