forked from VIPL-SLP/XV-SLR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_single_skeleton.yaml
82 lines (74 loc) · 1.72 KB
/
test_single_skeleton.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
feeder: feeder.dataloader_joint.JointFeeder
phase: test
num_epoch: 40
work_dir: ./work_dir/test_single_skeleton
batch_size: 32 # 128 -> 32
random_seed: 1234
test_batch_size: 32 # 128->4
num_worker: 10
device: 0
log_interval: 100
eval_interval: 1
save_interval: 1
load_weights: './weights/sk_phase2.pt'
optimizer_args:
optimizer: Adam
learning_rate:
default: 0.001
optim_args:
betas: [0.9, 0.998]
weight_decay: 0.00001
scheduler_type: MultiStepLR
scheduler_args:
milestones: [20, 35]
start_epoch: 0
feeder_args:
train:
input_list_file: ./data/train_self.json
num_frames: 64
data_type: ['2d_skeleton']
val:
input_list_file: ./data/val_self.json
num_frames: 64
data_type: ['2d_skeleton']
test:
# test input file is specified in the main.py load_test_data
num_frames: 64
data_type: ['2d_skeleton']
kps_config: &kps_path ./configs/kps/best_kps_config.yaml
# model: modules.SLT_model.SLT_Model
model: modules.islr_model.ISLRModel
model_args:
visual_backbone_args:
2d_skeleton:
type: STGCN
module_type: CoSign1s
kps_config: *kps_path
CR_args:
clip_length: 25
ratio: 0.2
level: '0'
adaptive: True
in_channels: 3
hidden_size: 1024
temporal_kernel: 5
cat_hand: True
# rgb:
# type: I3D
head_args:
classify:
type: ClassifyHead
in_dim: 1024
# specify the feat used for classification
feat_type: 2d_skeleton
norm_classifier: True
norm_scale: 32
class_num: 1000 # this will be overwrited by len(gloss_dict)
temporal_arg:
type: LSTM
loss_weight:
classify: 1.0
# use which head for prediction
pred_head: classify
aug_poss:
osxposs: 0.3