This repository contains pytorch code that produces the local minma finding algorithm in the paper: Third-order Smoothness Helps: Faster Stochastic Optimization Algorithms for Finding Local Minima.
We perform experiments of training a deep autoencoder on MNIST dataset, where the autoencoder is composed of a fully connected encoder with layers of size (28 x 28)-1024-512-256-32 and a symmetric decoder.
- Python (3.6.4)
- Pytorch (0.4.1)
- NumPy
- CUDA
- --LR-SCSG: learning rate for scsg
- --LR-NEG: learning rate for negative curvature descent
- --EPOCH: total epoch for the algorithm
- --BATCH-SIZE: mini batch size for scsg in training
- Run experiments on MNIST:
- python train_flash.py --EPOCH 500
- Third-order Smoothness Helps: Faster Stochastic Optimization Algorithms for Finding Local Minima. Yaodong Yu*, Pan Xu* and Quanquan Gu, (*: equal contribution). NeurIPS-2018.