Skip to content

🧠 Sentiment Analysis Web App: This Flask-based web application uses an LSTM Recurrent Neural Network to classify the sentiment of EDOM (student evaluations of lecturers) as positive, negative, or neutral.

Notifications You must be signed in to change notification settings

umarulkhak/edomphb-lstm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A LSTM Recurrent Neural Network based Flask Web App that classifies the sentiment of EDOM.

Getting Started

  1. Clone atau download repository local.
  2. Kemudian di edomphb-lstm directory, buat virtual Python environment dengan command python -m venv flaskapp dimana flaskapp adalah nama dari environment. Untuk nama environment boleh bebas.
  3. Kemudian aktifkan virtual environment dengan command `
    flaskapp\scripts\activate.bat
  4. Kemudian jalankan command pip install -r requirements.txt untuk install semua library yang dibutuhkan.
  5. Selanjutnya, jalankan aplikasi dengan command python run.py untuk proses running aplikasi
  6. Buka aplikasi di alamat localhost http://127.0.0.1:5000/di web browser.

Model & Dataset

Untuk file python pemodelan LSTM ada di forder model dan dataset berada di forder dataset.

Screenshots

Prerequisites

You will need Python3 installed on your local machine.

About

🧠 Sentiment Analysis Web App: This Flask-based web application uses an LSTM Recurrent Neural Network to classify the sentiment of EDOM (student evaluations of lecturers) as positive, negative, or neutral.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published