Skip to content
/ dart Public
forked from tschmidt23/dart

dense articulated real-time tracking

License

Notifications You must be signed in to change notification settings

uscresl/dart

 
 

Repository files navigation

dart: Dense Articulated Real-time Tracking

dart is a C++ library for tracking arbitrary articulated models with an RGB-D camera. It achieves real-time performance with the aid of a highly parallel CUDA implementation and state-of-the-art GPUs.

Required Dependencies

CUDA: https://developer.nvidia.com/cuda-zone

Eigen 3: sudo apt-get install libeigen3-dev

GNU libmatheval: sudo apt-get install libmatheval-dev

libjpeg: sudo apt-get install libjpeg-dev

libpng: sudo apt-get install libpng-dev

tinyxml: sudo apt-get install libtinyxml-dev

Optional Dependencies

Pangolin [GUI for the examples]: https://github.com/stevenlovegrove/Pangolin

OpenNI [for PrimeSense sensors]: https://github.com/OpenNI/OpenNI2 or http://structure.io/openni

DepthSense SDK [for Intel sensor]: sudo apt-get install depthsensesdk

Open Asset Import Library: sudo apt-get install libassimp-dev [for mesh models]

gtest [for testing]: sudo apt-get install libgtest-dev; cd /usr/src/gtest; sudo mkdir build; cd build; sudo cmake ..; sudo make; sudo mv libgtest* /usr/lib/;

Installation

cd [dart directory] mkdir build cd build cmake .. make

Example usage

An example demonstrating the use of DART to track robot hands manipulating objects, including the depth and color video, can be downloaded from here.

Notes on using the library

  • OpenGL context: dart is a very visual library and therefore assumes that it will be used in collaboration with a GUI tool. If an instance of dart::Tracker is instantiated with no active OpenGL context, it will not work. If you are not using the library with a GUI, you will have to create an OpenGL context (e.g. by using glutCreateWindow to create a 1x1 window).

  • Frames vs. Joints vs. SDFs: These are three separate but related ways in which parts of a DART model can be referenced. A frame is a frame of reference in the kinematic chain, a joint is a connection between two frames with a single degree of freedom, and a signed distance function (SDF) implicitly stores all geometry attached to a single frame. Every model has at least one frame (the root) but need not have any joints or signed distance functions. Because loops are not allowed, a model with N joints will have N+1 frames (and N+6 degrees of freedom). The number of SDFs is at most equal to the number of frames, but may be less if there are frames with no geometry attached to them. Functions in the Model class and subclasses that require indexing part of the model will indicate in the parameter name whether the index is by joint, by frame, or by SDF.

Model file format

DART models are stored as XML files which define the kinematic and geometric structure, optionally reference other mesh files to further describe the geometry. All models open with the "model" tag which has a single attribute, "version" describing the version of the DART XML format (current 1), like so:

<model version ="1">
  [model here]
</model>

The model can then optionally specify a number of parameters using the "param" tag, with attributes "name" (string) and "value" (floating point), like so:

<param name="armLength" value="1.5"/>

These parameters can then be referenced when defining sizes, positions, or orientations, as described below. Parameters are useful if the same value appears multiple times in your specification (as is often the case) or if you would like to set the parameter values programatically.

After defining parameters, the model may contain a number of hierachically nested "frame" and "geom" tags, which specify new rigid body frames of reference or geometric objects, respectively. The "frame" tag requires four attributes, "jointName" (string), "jointType" (currently accepts either "rotational" or "prismatic", "jointMin" (floating point), and "jointMax" (floating point), the last two of which define the joint limits. Additionally, the frame tag requires three nested tags, "position", "orientation", and "axis", each of which require three floating point attributes, "x", "y", and "z". An example might look like this:

<frame jointName="leftElbow" jointType="rotational" jointMin="0" jointMax="3.1416">
    <position x="0" y="0" z="1.5" />
    <orientation x="0" y="0" z="1.5708" />
    <axis x="1" y="0" z="0"/>
    [frame children here]
</frame>

This snippet defines a new frame of reference relative to its parent (the XML node directly above it in the hierarchy, or the root if the parent is the "model" tag). The transform from this frame of reference to the world is given by:

T_w,f = T_w,pTransR_zR_yR_x*R_axis(theta)

where T_w,p gives the transform from the parent to the world, Trans is a translation-only transform given by the "position" tag, R_z, R_y, and R_x are rotations about the z, y, and x axes (i.e. Euler angles) given by the corresponding entries in the "orientation" tag, and R_axis is a rotation by theta around the axis defined by the "axis" tag, with theta being given by the articulated pose of the model.

Finally, geometry can be rigidly attached to any frame of reference in the model by nesting a "geom" tag within a "frame" tag (or within the "model" tag for root geometry). The geometry tag requires 13 attributes: "type" (currently accepts "sphere","cylinder","cube", or "mesh"), "sx", "sy", and "sz", which define the scaling of the geometry, "tx", "ty", and "tz", which define the translation of the geometry root relative to the rigid body frame of reference, "rx", "ry" and "rz", which define the orientation relative to the rigid body frame of reference (also in Euler angles, as with the "frame" tag), and "red", "green" and "blue", which define the geometry color, which is not used for tracking but will affect how the model is rendered for debugging purposes. If "type" is set to "mesh", there is one final attribute, "meshFile", which gives the location of the mesh file, relative to the location of the XML file.

About

dense articulated real-time tracking

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 65.4%
  • Cuda 32.7%
  • CMake 1.9%