forked from freebayes/freebayes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfreebayes.cpp
702 lines (598 loc) · 29.7 KB
/
freebayes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
//
// freebayes
//
// A bayesian genetic variant detector.
//
// standard includes
//#include <cstdio>
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <map>
#include <iterator>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <float.h>
#include <stdlib.h>
// private libraries
#ifdef HAVE_BAMTOOLS
#include "api/BamReader.h"
#endif
#include "Fasta.h"
#include "TryCatch.h"
#include "Parameters.h"
#include "Allele.h"
#include "Sample.h"
#include "AlleleParser.h"
#include "Utility.h"
#include "SegfaultHandler.h"
#include "multichoose.h"
#include "multipermute.h"
#include "Genotype.h"
#include "DataLikelihood.h"
#include "Marginals.h"
#include "ResultData.h"
#include "Bias.h"
#include "Contamination.h"
#include "NonCall.h"
#include "Logging.h"
using namespace std;
// todo
// generalize the main function to take the parameters as input
// so that we can invoke the entire algorithm on different regions
// when requested to run in parallel
// take the targets (or whole genome) and make small jobs
// run the main function for each region in an omp parallel for loop
// only do this if the --parallel flag is set > 1
// freebayes main
int main (int argc, char *argv[]) {
// install segfault handler
signal(SIGSEGV, segfaultHandler);
AlleleParser* parser = new AlleleParser(argc, argv);
Parameters& parameters = parser->parameters;
list<Allele*> alleles;
Samples samples;
NonCalls nonCalls;
ostream& out = *(parser->output);
Bias observationBias;
if (!parameters.alleleObservationBiasFile.empty()) {
observationBias.open(parameters.alleleObservationBiasFile);
}
Contamination contaminationEstimates(0.5+parameters.probContamination, parameters.probContamination);
if (!parameters.contaminationEstimateFile.empty()) {
contaminationEstimates.open(parameters.contaminationEstimateFile);
}
// this can be uncommented to force operation on a specific set of genotypes
vector<Allele> allGenotypeAlleles;
allGenotypeAlleles.push_back(genotypeAllele(ALLELE_GENOTYPE, "A", 1));
allGenotypeAlleles.push_back(genotypeAllele(ALLELE_GENOTYPE, "T", 1));
allGenotypeAlleles.push_back(genotypeAllele(ALLELE_GENOTYPE, "G", 1));
allGenotypeAlleles.push_back(genotypeAllele(ALLELE_GENOTYPE, "C", 1));
int allowedAlleleTypes = ALLELE_REFERENCE;
if (parameters.allowSNPs) {
allowedAlleleTypes |= ALLELE_SNP;
}
if (parameters.allowIndels) {
allowedAlleleTypes |= ALLELE_INSERTION;
allowedAlleleTypes |= ALLELE_DELETION;
}
if (parameters.allowMNPs) {
allowedAlleleTypes |= ALLELE_MNP;
}
if (parameters.allowComplex) {
allowedAlleleTypes |= ALLELE_COMPLEX;
}
// output VCF header
if (parameters.output == "vcf") {
out << parser->variantCallFile.header << endl;
}
if (0 < parameters.limitCoverage) {
srand(13);
}
Allele nullAllele = genotypeAllele(ALLELE_NULL, "N", 1, "1N");
unsigned long total_sites = 0;
unsigned long processed_sites = 0;
while (parser->getNextAlleles(samples, allowedAlleleTypes)) {
++total_sites;
DEBUG2("at start of main loop");
// did we switch chromosomes or exceed our gVCF chunk size, or do we not want to use chunks?
// if so, we may need to output a gVCF record
Results results;
if (parameters.gVCFout
&& !(nonCalls.empty())
&& ( (parameters.gVCFNoChunk)
|| (nonCalls.begin()->first != parser->currentSequenceName)
|| (parameters.gVCFchunk
&& nonCalls.lastPos().second - nonCalls.firstPos().second >= parameters.gVCFchunk
)
)
){
vcflib::Variant var(parser->variantCallFile);
out << results.gvcf(var, nonCalls, parser) << endl;
nonCalls.clear();
}
// don't process non-ATGCN's in the reference
string cb = parser->currentReferenceBaseString();
if (cb != "A" && cb != "T" && cb != "C" && cb != "G" && cb != "N") {
DEBUG2("current reference base is not in { A T G C N }");
continue;
}
int coverage = countAlleles(samples);
DEBUG("position: " << parser->currentSequenceName << ":" << (long unsigned int) parser->currentPosition + 1 << " coverage: " << coverage);
bool skip = false;
if (!parser->hasInputVariantAllelesAtCurrentPosition()) {
// skips 0-coverage regions
if (coverage == 0) {
DEBUG("no alleles left at this site after filtering");
skip = true;
} else if (coverage < parameters.minCoverage) {
DEBUG("post-filtering coverage of " << coverage << " is less than --min-coverage of " << parameters.minCoverage);
skip = true;
} else if (parameters.onlyUseInputAlleles) {
DEBUG("no input alleles, but using only input alleles for analysis, skipping position");
skip = true;
} else if (0 < parameters.limitCoverage) {
// go through each sample
for (Samples::iterator s = samples.begin(); s != samples.end(); ++s) {
string sampleName = s->first;
Sample& sample = s->second;
// get the coverage for this sample
int sampleCoverage = 0;
for (Sample::iterator sg = sample.begin(); sg != sample.end(); ++sg) {
sampleCoverage += sg->second.size();
}
if (sampleCoverage <= parameters.limitCoverage) {
continue;
}
DEBUG("coverage " << sampleCoverage << " for sample " << sampleName << " was > " << parameters.limitCoverage << ", so we will remove " << (sampleCoverage - parameters.limitCoverage) << " genotypes");
vector<string> genotypesToErase;
do {
double probRemove = (sampleCoverage - parameters.limitCoverage) / (double)sampleCoverage;
vector<string> genotypesToErase;
// iterate through the genotypes
for (Sample::iterator sg = sample.begin(); sg != sample.end(); ++sg) {
vector<Allele*> allelesToKeep;
// iterate through each allele
for (int alleleIndex = 0; alleleIndex < sg->second.size(); alleleIndex++) {
// only if we have more alleles to remove
if (parameters.limitCoverage < sampleCoverage) {
double r = rand() / (double)RAND_MAX;
if (r < probRemove) { // skip over this allele
sampleCoverage--;
continue;
}
}
// keep it
allelesToKeep.push_back(sg->second[alleleIndex]);
}
// re-assign the alleles to this genotype
if (allelesToKeep.size() < sg->second.size()) {
sg->second.assign(allelesToKeep.begin(), allelesToKeep.end());
}
// if no more alleles for this genotype, remove it later
if (sg->second.empty()) {
genotypesToErase.push_back(sg->first);
}
}
// remove empty genotypes
for (vector<string>::iterator gt = genotypesToErase.begin(); gt != genotypesToErase.end(); ++gt) {
sample.erase(*gt);
}
} while (parameters.limitCoverage < sampleCoverage);
sampleCoverage = 0;
for (Sample::iterator sg = sample.begin(); sg != sample.end(); ++sg) {
sampleCoverage += sg->second.size();
}
DEBUG("coverage for sample " << sampleName << " is now " << sampleCoverage);
}
// update coverage
coverage = countAlleles(samples);
}
DEBUG2("coverage " << parser->currentSequenceName << ":" << parser->currentPosition << " == " << coverage);
// establish a set of possible alternate alleles to evaluate at this location
if (!parameters.reportMonomorphic
&& !sufficientAlternateObservations(samples, parameters.minAltCount, parameters.minAltFraction)) {
DEBUG("insufficient alternate observations");
skip = true;
}
if (parameters.reportMonomorphic) {
DEBUG("calling at site even though there are no alternate observations");
}
} else {
/*
cerr << "has input variants at " << parser->currentSequenceName << ":" << parser->currentPosition << endl;
vector<Allele>& inputs = parser->inputVariantAlleles[parser->currentSequenceName][parser->currentPosition];
for (vector<Allele>::iterator a = inputs.begin(); a != inputs.end(); ++a) {
cerr << *a << endl;
}
*/
}
if (skip) {
// record data for gVCF
if (parameters.gVCFout) {
nonCalls.record(parser->currentSequenceName, parser->currentPosition, samples);
}
// and step ahead
continue;
}
// to ensure proper ordering of output stream
vector<string> sampleListPlusRef;
for (vector<string>::iterator s = parser->sampleList.begin(); s != parser->sampleList.end(); ++s) {
sampleListPlusRef.push_back(*s);
}
if (parameters.useRefAllele) {
sampleListPlusRef.push_back(parser->currentSequenceName);
}
// establish genotype alleles using input filters
map<string, vector<Allele*> > alleleGroups;
groupAlleles(samples, alleleGroups);
DEBUG2("grouped alleles by equivalence");
vector<Allele> genotypeAlleles = parser->genotypeAlleles(alleleGroups, samples, parameters.onlyUseInputAlleles);
// always include the reference allele as a possible genotype, even when we don't include it by default
if (!parameters.useRefAllele) {
vector<Allele> refAlleleVector;
refAlleleVector.push_back(genotypeAllele(ALLELE_REFERENCE, string(1, parser->currentReferenceBase), 1, "1M"));
genotypeAlleles = alleleUnion(genotypeAlleles, refAlleleVector);
}
map<string, vector<Allele*> > partialObservationGroups;
map<Allele*, set<Allele*> > partialObservationSupport;
// build haplotype alleles matching the current longest allele (often will do nothing)
// this will adjust genotypeAlleles if changes are made
DEBUG("building haplotype alleles, currently there are " << genotypeAlleles.size() << " genotype alleles");
DEBUG(genotypeAlleles);
parser->buildHaplotypeAlleles(genotypeAlleles,
samples,
alleleGroups,
partialObservationGroups,
partialObservationSupport,
allowedAlleleTypes);
DEBUG("built haplotype alleles, now there are " << genotypeAlleles.size() << " genotype alleles");
DEBUG(genotypeAlleles);
string referenceBase = parser->currentReferenceHaplotype();
// for debugging
/*
for (Samples::iterator s = samples.begin(); s != samples.end(); ++s) {
string sampleName = s->first;
Sample& sample = s->second;
cerr << sampleName << ": " << sample << endl;
}
*/
// re-calculate coverage, as this could change now that we've built haplotype alleles
coverage = countAlleles(samples);
// estimate theta using the haplotype length
long double theta = parameters.TH * parser->lastHaplotypeLength;
// if we have only one viable allele, we don't have evidence for variation at this site
if (!parser->hasInputVariantAllelesAtCurrentPosition() && !parameters.reportMonomorphic && genotypeAlleles.size() <= 1 && genotypeAlleles.front().isReference()) {
DEBUG("no alternate genotype alleles passed filters at " << parser->currentSequenceName << ":" << parser->currentPosition);
continue;
}
DEBUG("genotype alleles: " << genotypeAlleles);
// add the null genotype
bool usingNull = false;
if (parameters.excludeUnobservedGenotypes && genotypeAlleles.size() > 2) {
genotypeAlleles.push_back(nullAllele);
usingNull = true;
}
++processed_sites;
// generate possible genotypes
// for each possible ploidy in the dataset, generate all possible genotypes
vector<int> ploidies = parser->currentPloidies(samples);
map<int, vector<Genotype> > genotypesByPloidy = getGenotypesByPloidy(ploidies, genotypeAlleles);
int numCopiesOfLocus = parser->copiesOfLocus(samples);
DEBUG2("generated all possible genotypes:");
if (parameters.debug2) {
for (map<int, vector<Genotype> >::iterator s = genotypesByPloidy.begin(); s != genotypesByPloidy.end(); ++s) {
vector<Genotype>& genotypes = s->second;
for (vector<Genotype>::iterator g = genotypes.begin(); g != genotypes.end(); ++g) {
DEBUG2(*g);
}
}
}
// get estimated allele frequencies using sum of estimated qualities
map<string, double> estimatedAlleleFrequencies = samples.estimatedAlleleFrequencies();
double estimatedMaxAlleleFrequency = 0;
double estimatedMaxAlleleCount = 0;
double estimatedMajorFrequency = estimatedAlleleFrequencies[referenceBase];
if (estimatedMajorFrequency < 0.5) estimatedMajorFrequency = 1-estimatedMajorFrequency;
double estimatedMinorFrequency = 1-estimatedMajorFrequency;
//cerr << "num copies of locus " << numCopiesOfLocus << endl;
int estimatedMinorAllelesAtLocus = max(1, (int) ceil((double) numCopiesOfLocus * estimatedMinorFrequency));
//cerr << "estimated minor frequency " << estimatedMinorFrequency << endl;
//cerr << "estimated minor count " << estimatedMinorAllelesAtLocus << endl;
map<string, vector<vector<SampleDataLikelihood> > > sampleDataLikelihoodsByPopulation;
map<string, vector<vector<SampleDataLikelihood> > > variantSampleDataLikelihoodsByPopulation;
map<string, vector<vector<SampleDataLikelihood> > > invariantSampleDataLikelihoodsByPopulation;
map<string, int> inputAlleleCounts;
int inputLikelihoodCount = 0;
DEBUG2("calculating data likelihoods");
calculateSampleDataLikelihoods(
samples,
results,
parser,
genotypesByPloidy,
parameters,
usingNull,
observationBias,
genotypeAlleles,
contaminationEstimates,
estimatedAlleleFrequencies,
sampleDataLikelihoodsByPopulation,
variantSampleDataLikelihoodsByPopulation,
invariantSampleDataLikelihoodsByPopulation);
DEBUG2("finished calculating data likelihoods");
// if somehow we get here without any possible sample genotype likelihoods, bail out
bool hasSampleLikelihoods = false;
for (map<string, vector<vector<SampleDataLikelihood> > >::iterator s = sampleDataLikelihoodsByPopulation.begin();
s != sampleDataLikelihoodsByPopulation.end(); ++s) {
if (!s->second.empty()) {
hasSampleLikelihoods = true;
break;
}
}
if (!hasSampleLikelihoods) {
continue;
}
DEBUG2("calulating combo posteriors over " << parser->populationSamples.size() << " populations");
// XXX
// TODO skip these steps in the case that there is only one population?
// we provide p(var|data), or the probability that the location has
// variation between individuals relative to the probability that it
// has no variation
//
// in other words:
// p(var|d) = 1 - p(AA|d) - p(TT|d) - P(GG|d) - P(CC|d)
//
// the approach is go through all the homozygous combos
// and then subtract this from 1... resolving p(var|d)
BigFloat pVar = 1.0;
BigFloat pHom = 0.0;
long double bestComboOddsRatio = 0;
bool bestOverallComboIsHet = false;
GenotypeCombo bestCombo; // = NULL;
GenotypeCombo bestGenotypeComboByMarginals;
vector<vector<SampleDataLikelihood> > allSampleDataLikelihoods;
DEBUG("searching genotype space");
// resample the posterior, this time without bounds on the
// samples we vary, ensuring that we can generate marginals for
// all sample/genotype combinations
//SampleDataLikelihoods marginalLikelihoods = sampleDataLikelihoods; // heavyweight copy...
map<string, list<GenotypeCombo> > genotypeCombosByPopulation;
int genotypingTotalIterations = 0; // tally total iterations required to reach convergence
map<string, list<GenotypeCombo> > glMaxCombos;
for (map<string, SampleDataLikelihoods>::iterator p = sampleDataLikelihoodsByPopulation.begin(); p != sampleDataLikelihoodsByPopulation.end(); ++p) {
const string& population = p->first;
SampleDataLikelihoods& sampleDataLikelihoods = p->second;
list<GenotypeCombo>& populationGenotypeCombos = genotypeCombosByPopulation[population];
DEBUG2("genqerating banded genotype combinations from " << sampleDataLikelihoods.size() << " sample genotypes in population " << population);
// cap the number of iterations at 2 x the number of alternate alleles
// max it at parameters.genotypingMaxIterations iterations, min at 10
int itermax = min(max(10, 2 * estimatedMinorAllelesAtLocus), parameters.genotypingMaxIterations);
//int itermax = parameters.genotypingMaxIterations;
// XXX HACK
// passing 0 for bandwidth and banddepth means "exhaustive local search"
// this produces properly normalized GQ's at polyallelic sites
int adjustedBandwidth = 0;
int adjustedBanddepth = 0;
// however, this can lead to huge performance problems at complex sites,
// so we implement this hack...
if (parameters.genotypingMaxBandDepth > 0 &&
genotypeAlleles.size() > parameters.genotypingMaxBandDepth) {
adjustedBandwidth = 1;
adjustedBanddepth = parameters.genotypingMaxBandDepth;
}
GenotypeCombo nullCombo;
SampleDataLikelihoods nullSampleDataLikelihoods;
// this is the genotype-likelihood maximum
if (parameters.reportGenotypeLikelihoodMax) {
GenotypeCombo comboKing;
vector<int> initialPosition;
initialPosition.assign(sampleDataLikelihoods.size(), 0);
SampleDataLikelihoods nullDataLikelihoods; // dummy variable
makeComboByDatalLikelihoodRank(comboKing,
initialPosition,
sampleDataLikelihoods,
nullDataLikelihoods,
inputAlleleCounts,
theta,
parameters.pooledDiscrete,
parameters.ewensPriors,
parameters.permute,
parameters.hwePriors,
parameters.obsBinomialPriors,
parameters.alleleBalancePriors,
parameters.diffusionPriorScalar);
glMaxCombos[population].push_back(comboKing);
}
// search much longer for convergence
convergentGenotypeComboSearch(
populationGenotypeCombos,
nullCombo,
sampleDataLikelihoods, // vary everything
sampleDataLikelihoods,
nullSampleDataLikelihoods,
samples,
genotypeAlleles,
inputAlleleCounts,
adjustedBandwidth,
adjustedBanddepth,
theta,
parameters.pooledDiscrete,
parameters.ewensPriors,
parameters.permute,
parameters.hwePriors,
parameters.obsBinomialPriors,
parameters.alleleBalancePriors,
parameters.diffusionPriorScalar,
itermax,
genotypingTotalIterations,
true); // add homozygous combos
// ^^ combo results are sorted by default
}
// generate the GL max combo
GenotypeCombo glMax;
if (parameters.reportGenotypeLikelihoodMax) {
list<GenotypeCombo> glMaxGenotypeCombos;
combinePopulationCombos(glMaxGenotypeCombos, glMaxCombos);
glMax = glMaxGenotypeCombos.front();
}
// accumulate combos from independently-calculated populations into the list of combos
list<GenotypeCombo> genotypeCombos; // build new combos into this list
combinePopulationCombos(genotypeCombos, genotypeCombosByPopulation);
// TODO factor out the following blocks as they are repeated from above
// re-get posterior normalizer
vector<long double> comboProbs;
for (list<GenotypeCombo>::iterator gc = genotypeCombos.begin(); gc != genotypeCombos.end(); ++gc) {
comboProbs.push_back(gc->posteriorProb);
}
long double posteriorNormalizer = logsumexp_probs(comboProbs);
// recalculate posterior normalizer
pVar = 1.0;
pHom = 0.0;
// calculates pvar and gets the best het combo
list<GenotypeCombo>::iterator gc = genotypeCombos.begin();
bestCombo = *gc;
for ( ; gc != genotypeCombos.end(); ++gc) {
if (gc->isHomozygous() && gc->alleles().front() == referenceBase) {
pVar -= big_exp(gc->posteriorProb - posteriorNormalizer);
pHom += big_exp(gc->posteriorProb - posteriorNormalizer);
} else if (gc == genotypeCombos.begin()) {
bestOverallComboIsHet = true;
}
}
// odds ratio between the first and second-best combinations
if (genotypeCombos.size() > 1) {
bestComboOddsRatio = genotypeCombos.front().posteriorProb - (++genotypeCombos.begin())->posteriorProb;
}
if (parameters.calculateMarginals) {
// make a combined, all-populations sample data likelihoods vector to accumulate marginals
SampleDataLikelihoods allSampleDataLikelihoods;
for (map<string, SampleDataLikelihoods>::iterator p = sampleDataLikelihoodsByPopulation.begin(); p != sampleDataLikelihoodsByPopulation.end(); ++p) {
SampleDataLikelihoods& sdls = p->second;
allSampleDataLikelihoods.reserve(allSampleDataLikelihoods.size() + distance(sdls.begin(), sdls.end()));
allSampleDataLikelihoods.insert(allSampleDataLikelihoods.end(), sdls.begin(), sdls.end());
}
// calculate the marginal likelihoods for this population
marginalGenotypeLikelihoods(genotypeCombos, allSampleDataLikelihoods);
// store the marginal data likelihoods in the results, for easy parsing
// like a vector -> map conversion...
results.update(allSampleDataLikelihoods);
}
map<string, int> repeats;
if (parameters.showReferenceRepeats) {
repeats = parser->repeatCounts(parser->currentSequencePosition(), parser->currentSequence, 12);
}
vector<Allele> alts;
if (parameters.onlyUseInputAlleles
|| parameters.reportAllHaplotypeAlleles
|| parameters.pooledContinuous) {
//alts = genotypeAlleles;
for (vector<Allele>::iterator a = genotypeAlleles.begin(); a != genotypeAlleles.end(); ++a) {
if (!a->isReference()) {
alts.push_back(*a);
}
}
} else {
// get the unique alternate alleles in this combo, sorted by frequency in the combo
vector<pair<Allele, int> > alternates = alternateAlleles(bestCombo, referenceBase);
for (vector<pair<Allele, int> >::iterator a = alternates.begin(); a != alternates.end(); ++a) {
Allele& alt = a->first;
if (!alt.isNull() && !alt.isReference())
alts.push_back(alt);
}
// if there are no alternate alleles in the best combo, use the genotype alleles
// XXX ...
if (alts.empty()) {
for (vector<Allele>::iterator a = genotypeAlleles.begin(); a != genotypeAlleles.end(); ++a) {
if (!a->isReference()) {
alts.push_back(*a);
}
}
}
}
// reporting the GL maximum *over all alleles*
if (parameters.reportGenotypeLikelihoodMax) {
bestCombo = glMax;
} else {
// the default behavior is to report the GL maximum genotyping over the alleles in the best posterior genotyping
// select the maximum-likelihood GL given the alternates we have
// this is not the same thing as the GL max over all alleles!
// it is the GL max over the selected alleles at this point
vector<Allele> alleles = alts;
for (vector<Allele>::iterator a = genotypeAlleles.begin(); a != genotypeAlleles.end(); ++a) {
if (a->isReference()) {
alleles.push_back(*a);
}
}
map<string, list<GenotypeCombo> > glMaxComboBasedOnAltsByPop;
for (map<string, SampleDataLikelihoods>::iterator p = sampleDataLikelihoodsByPopulation.begin(); p != sampleDataLikelihoodsByPopulation.end(); ++p) {
const string& population = p->first;
SampleDataLikelihoods& sampleDataLikelihoods = p->second;
GenotypeCombo glMaxBasedOnAlts;
for (SampleDataLikelihoods::iterator v = sampleDataLikelihoods.begin(); v != sampleDataLikelihoods.end(); ++v) {
SampleDataLikelihood* m = NULL;
for (vector<SampleDataLikelihood>::iterator d = v->begin(); d != v->end(); ++d) {
if (d->genotype->matchesAlleles(alleles)) {
m = &*d;
break;
}
}
assert(m != NULL);
glMaxBasedOnAlts.push_back(m);
}
glMaxComboBasedOnAltsByPop[population].push_back(glMaxBasedOnAlts);
}
list<GenotypeCombo> glMaxBasedOnAltsGenotypeCombos; // build new combos into this list
combinePopulationCombos(glMaxBasedOnAltsGenotypeCombos, glMaxComboBasedOnAltsByPop);
bestCombo = glMaxBasedOnAltsGenotypeCombos.front();
}
DEBUG("best combo: " << bestCombo);
// output
if ((!alts.empty() && (1 - pHom.ToDouble()) >= parameters.PVL) || parameters.PVL == 0){
// write the last gVCF record(s)
if (parameters.gVCFout && !nonCalls.empty()) {
vcflib::Variant var(parser->variantCallFile);
out << results.gvcf(var, nonCalls, parser) << endl;
nonCalls.clear();
}
vcflib::Variant var(parser->variantCallFile);
out << results.vcf(
var,
pHom,
bestComboOddsRatio,
samples,
referenceBase,
alts,
repeats,
genotypingTotalIterations,
parser->sampleList,
coverage,
bestCombo,
alleleGroups,
partialObservationGroups,
partialObservationSupport,
genotypesByPloidy,
parser->sequencingTechnologies,
parser)
<< endl;
} else if (parameters.gVCFout) {
// record statistics for gVCF output
nonCalls.record(parser->currentSequenceName, parser->currentPosition, samples);
}
DEBUG2("finished position");
}
// write the last gVCF record
// NOTE: for some resion this is only needed if we are using gVCF chunks, if minimal chunking it is not requird, in fact it breaks....
if (parameters.gVCFout && !nonCalls.empty() && !parameters.gVCFNoChunk) {
Results results;
vcflib::Variant var(parser->variantCallFile);
out << results.gvcf(var, nonCalls, parser) << endl;
nonCalls.clear();
}
DEBUG("total sites: " << total_sites << endl
<< "processed sites: " << processed_sites << endl
<< "ratio: " << (float) processed_sites / (float) total_sites);
delete parser;
return 0;
}