Skip to content

{impactr} Mechanical loading prediction through accelerometer data

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

verasls/impactr

Repository files navigation

impactr

DOI CRAN status devel Version R-CMD-check Codecov test coverage Lifecycle: maturing

impactr is a package with functions to read, process and analyse raw accelerometer data related to mechanical loading variables. You can learn more about this package features and how to use it in vignette("impactr").

Installation

To install the latest stable version of impactr from CRAN, run:

install.packages("impactr")

You can also install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("verasls/impactr")

Usage

library(impactr)

read_acc(impactr_example("hip-raw.csv")) |>
 define_region(
    start_time = "2021-04-06 15:45:00",
    end_time = "2021-04-06 15:45:30"
  ) |>
  specify_parameters(
    acc_placement = "hip",
    subj_body_mass = 78
  ) |>
  filter_acc() |>
  use_resultant() |>
  find_peaks(vector = "resultant") |>
  predict_loading(
    outcome = "grf",
    vector = "resultant",
    model = "walking/running"
  )
#> # Start time:              2021-04-06 15:43:00
#> # Sampling frequency:      100Hz
#> # Accelerometer placement: Hip
#> # Subject body mass:       78kg
#> # Filter:                  Butterworth (4th-ord, low-pass, 20Hz)
#> # Data dimensions:         26 × 3
#>    timestamp           resultant_peak_acc resultant_peak_grf
#>    <dttm>                           <dbl>              <dbl>
#>  1 2021-04-06 15:45:00               1.32              1466.
#>  2 2021-04-06 15:45:01               1.36              1469.
#>  3 2021-04-06 15:45:04               1.30              1464.
#>  4 2021-04-06 15:45:04               2.32              1543.
#>  5 2021-04-06 15:45:05               1.50              1480.
#>  6 2021-04-06 15:45:06               1.68              1494.
#>  7 2021-04-06 15:45:06               1.51              1480.
#>  8 2021-04-06 15:45:07               1.96              1515.
#>  9 2021-04-06 15:45:08               1.37              1470.
#> 10 2021-04-06 15:45:08               1.86              1508.
#> # … with 16 more rows
#> # ℹ Use `print(n = ...)` to see more rows

About

{impactr} Mechanical loading prediction through accelerometer data

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks