Skip to content

viczer/P6-Openclassroom-Classez-des-images-l-aide-d-algorithmes-de-Deep-Learning

Repository files navigation

StanfordDogs

Presentation

In this project, we use Tensoflow (Keras) to implement and train machine learning algorithms to automatically detect dog breeds in pictures.

We implement a CNN (Convulotionnal Neural Network) from scratch, and fine-tune pre-trained models thanks to transfer learning. We use KerasTuner for the hyperparameters search and Tensorboard to track the results.

We develop a wrapper for Keras, KerasTuner & TensorHub in order to :

  • Automatically generate neural networks and their structure
  • Train neural networks by applying hyperparameters search strategies
  • Visualize the performances of the generated models

We develop a MVP with Streamlit for users to esaily classify theirs images to obtain a breed prediction using the drag & drop feature.

Files Description

Data

The training data used in this notebook is the Stanford Dogs Dataset.

Compétences évaluées

Évaluer les performances d’un modèle de Deep Learning

Sélectionner un modèle d'apprentissage Deep Learning adapté à une problèmatique métier

Mettre en place un modèle de Deep Learning

Adapter les paramètres d'un modèle de Deep Learning afin de l’améliorer

Transformer les variables pertinentes d'un modèle de Deep Learning

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published