This work uses Pytorch, PennyLane and Qiskit to generate new molecules
Reference paper: https://arxiv.org/abs/1805.11973
Reference paper: https://arxiv.org/abs/1805.11973
Refer DeCao's repo: https://github.com/nicola-decao/MolGAN for baseline
this repo was created to fix some code issues and implement statitical analysis for circuit design and energy consumption.
!pip install frechetdist
!pip install kora
import kora.install.rdkit
!pip install rdkit-pypi
!pip -q install Pillow
!pip install torch torchvision
#Bash commands to download the QM9 dataset through the '.sh' file
import os
os.chdir("/home/vikram/Quantum-GAN-implementation-using-PennyLane-and-IBMQ/data/")
%%bash
chmod u+x download_dataset.sh
./download_dataset.sh
!python sparse_molecular_dataset.py
import os
os.getcwd()
os.chdir("/home/vikram/Quantum-GAN-implementation-using-PennyLane-and-IBMQ/")
!python main.py --quantum True --layer 2 --qubits 8 --complexity 'nr'