Python3 reference for interview coding problems/light competitive programming. Contributions welcome!
I built this cheatsheet while teaching myself Python3 for various interviews and leetcoding for fun after not using Python for about a decade. This cheetsheet only contains code that I didn't know but needed to use to solve a specific coding problem. I did this to try to get a smaller high frequency subset of Python vs a comprehensive list of all methods. Additionally, the act of recording the syntax and algorithms helped me store it in memory and as a result I almost never actually referenced this sheet. Hopefully it helps you in your efforts or inspires you to build your own and best of luck!
I choose Python3 despite being more familiar with Javascript, Java, C++ and Golang for interviews as I felt Python had the combination of the most standard libraries available as well as syntax that resembles psuedo code, therefore being the most expressive. Python and Java both have the most examples but Python wins in this case due to being much more concise. I was able to get myself reasonably prepared with Python syntax in six weeks of practice. After picking up Python I have timed myself solving the same exercises in Golang and Python. Although I prefer Golang, I find that I can complete Python examples in half the time even accounting for +50% more bugs (approximately) that I tend to have in Python vs Go. This is optimizing for solved interview questons under pressure, when performance is considered then Go/C++ does consistently perform 1/10 the time of Python. In some rare cases, algorithms that time out in Python sometimes pass in C++/Go on Leetcode.
- Literals
- Loops
- Strings
- Slicing
- Tuples
- Sort
- Hash
- Set
- List
- Dict
- Binary Tree
- heapq
- lambda
- zip
- Random
- Constants
- Ternary Condition
- Bitwise operators
- For Else
- Modulo
- any
- all
- bisect
- math
- iter
- map
- filter
- reduce
- itertools
- regular expression
- Types
- Grids
255, 0b11111111, 0o377, 0xff # Integers (decimal, binary, octal, hex)
123.0, 1.23 # Float
7 + 5j, 7j # Complex
'a', '\141', '\x61' # Character (literal, octal, hex)
'\n', '\\', '\'', '\"' # Newline, backslash, single quote, double quote
"string\n" # String of characters ending with newline
"hello"+"world" # Concatenated strings
True, False # bool constants, 1 == True, 0 == False
[1, 2, 3, 4, 5] # List
['meh', 'foo', 5] # List
(2, 4, 6, 8) # Tuple, immutable
{'name': 'a', 'age': 90} # Dict
{'a', 'e', 'i', 'o', 'u'} # Set
None # Null var
Go through all elements
i = 0
while i < len(str):
i += 1
equivalent
for i in range(len(message)):
print(i)
Get largest number index from right
while i > 0 and nums [i-1] >= nums[i]:
i -= 1
Manually reversing
l, r = i, len(nums) - 1
while l < r:
nums[l], nums[r] = nums[r], nums[l]
l += 1
r -= 1
Go past the loop if we are clever with our boundry
for i in range(len(message) + 1):
if i == len(message) or message[i] == ' ':
Fun with Ranges - range(start, stop, step)
for a in range(0,3): # 0,1,2
for a in reversed(range(0,3)) # 2,1,0
for i in range(3,-1,-1) # 3,2,1,0
for i in range(len(A)//2): # A = [0,1,2,3,4,5]
print(i) # 0,1,2
print(A[i]) # 0,1,2
print(~i) # -1,-2,-3
print(A[~i]) # 5,4,3
str1.find('x') # find first location of char x and return index
str1.rfind('x') # find first int location of char x from reverse
Parse a log on ":"
l = "0:start:0"
tokens = l.split(":")
print(tokens) # ['0', 'start', '0']
Reverse works with built in split, [::-1] and " ".join()
# s = "the sky is blue"
def reverseWords(self, s: str) -> str:
wordsWithoutWhitespace = s.split() # ['the', 'sky', 'is', 'blue']
reversedWords = wordsWithoutWhitespace[::-1] # ['blue', 'is', 'sky', 'the']
final = " ".join(reversedWords) # blue is sky the
Manual split based on isalpha()
def splitWords(input_string) -> list:
words = [] #
start = length = 0
for i, c in enumerate(input_string):
if c.isalpha():
if length == 0:
start = i
length += 1
else:
words.append(input_string[start:start+length])
length = 0
if length > 0:
words.append(input_string[start:start+length])
return words
Test type of char
def rotationalCipher(input, rotation_factor):
rtn = []
for c in input:
if c.isupper():
ci = ord(c) - ord('A')
ci = (ci + rotation_factor) % 26
rtn.append(chr(ord('A') + ci))
elif c.islower():
ci = ord(c) - ord('a')
ci = (ci + rotation_factor) % 26
rtn.append(chr(ord('a') + ci))
elif c.isnumeric():
ci = ord(c) - ord('0')
ci = (ci + rotation_factor) % 10
rtn.append(chr(ord('0') + ci))
else:
rtn.append(c)
return "".join(rtn)
AlphaNumberic
isalnum()
Get charactor index
print(ord('A')) # 65
print(ord('B')-ord('A')+1) # 2
print(chr(ord('a') + 2)) # c
Replace characters or strings
def isValid(self, s: str) -> bool:
while '[]' in s or '()' in s or '{}' in s:
s = s.replace('[]','').replace('()','').replace('{}','')
return len(s) == 0
Insert values in strings
txt3 = "My name is {}, I'm {}".format("John",36) # My name is John, I'm 36
Multiply strings/lists with *, even booleans which map to True(1) and False(0)
'meh' * 2 # mehmeh
['meh'] * 2 # ['meh', 'meh']
['meh'] * True #['meh']
['meh'] * False #[]
Find substring in string
txt = "Hello, welcome to my world."
x = txt.find("welcome") # 7
startswith and endswith are very handy
str = "this is string example....wow!!!"
str.endswith("!!") # True
str.startswith("this") # True
str.endswith("is", 2, 4) # True
Python3 format strings
name = "Eric"
profession = "comedian"
affiliation = "Monty Python"
message = (
f"Hi {name}. "
f"You are a {profession}. "
f"You were in {affiliation}."
)
message
'Hi Eric. You are a comedian. You were in Monty Python.'
Print string with all chars, useful for debugging
print(repr("meh\n")) # 'meh\n'
Slicing intro
+---+---+---+---+---+---+
| P | y | t | h | o | n |
+---+---+---+---+---+---+
Slice position: 0 1 2 3 4 5 6
Index position: 0 1 2 3 4 5
p = ['P','y','t','h','o','n']
p[0] 'P' # indexing gives items, not lists
alpha[slice(2,4)] # equivalent to p[2:4]
p[0:1] # ['P'] Slicing gives lists
p[0:5] # ['P','y','t','h','o'] Start at beginning and count 5
p[2:4] = ['t','r'] # Slice assignment ['P','y','t','r','o','n']
p[2:4] = ['s','p','a','m'] # Slice assignment can be any size['P','y','s','p','a','m','o','n']
p[4:4] = ['x','y'] # insert slice ['P','y','t','h','x','y','o','n']
p[0:5:2] # ['P', 't', 'o'] sliceable[start:stop:step]
p[5:0:-1] # ['n', 'o', 'h', 't', 'y']
Go through num and get combinations missing a member
numList = [1,2,3,4]
for i in range(len(numList)):
newList = numList[0:i] + numList[i+1:len(numList)]
print(newList) # [2, 3, 4], [1, 3, 4], [1, 2, 4], [1, 2, 3]
Collection that is ordered and unchangable
thistuple = ("apple", "banana", "cherry")
print(thistuple[1]) # banana
Can be used with Dicts
def groupAnagrams(self, strs: List[str]) -> List[List[str]]:
d = defaultdict(list)
for w in strs:
key = tuple(sorted(w))
d[key].append(w)
return d.values()
sorted(iterable, key=key, reverse=reverse)
Sort sorts alphabectically, from smallest to largest
print(sorted(['Ford', 'BMW', 'Volvo'])) # ['BMW', 'Ford', 'Volvo']
nums = [-4,-1,0,3,10]
print(sorted(n*n for n in nums)) # [0,1,9,16,100]
cars = ['Ford', 'BMW', 'Volvo']
cars.sort() # returns None type
cars.sort(key=lambda x: len(x) ) # ['BMW', 'Ford', 'Volvo']
print(sorted(cars, key=lambda x:len(x))) # ['BMW', 'Ford', 'Volvo']
Sort key by value, even when value is a list
meh = {'a':3,'b':0,'c':2,'d':-1}
print(sorted(meh, key=lambda x:meh[x])) # ['d', 'b', 'c', 'a']
meh = {'a':[0,3,'a'],'b':[-2,-3,'b'],'c':[2,3,'c'],'d':[-2,-2,'d']}
print(sorted(meh, key=lambda x:meh[x])) # ['b', 'd', 'a', 'c']
def merge_sorted_lists(arr1, arr2): # built in sorted does Timsort optimized for subsection sorted lists
return sorted(arr1 + arr2)
Sort an array but keep the original indexes
self.idx, self.vals = zip(*sorted([(i,v) for i,v in enumerate(nums)], key=lambda x:x[1]))
Sort by tuple, 2nd element then 1st ascending
a = [(5,10), (2,20), (2,3), (0,100)]
test = sorted(a, key = lambda x: (x[1],x[0]))
print(test) # [(2, 3), (5, 10), (2, 20), (0, 100)]
test = sorted(a, key = lambda x: (-x[1],x[0]))
print(test) # [(0, 100), (2, 20), (5, 10), (2, 3)]
Sort and print dict values by key
ans = {-1: [(10, 1), (3, 3)], 0: [(0, 0), (2, 2), (7, 4)], -3: [(8, 5)]}
for key, value in sorted(ans.items()): print(value)
# [(8, 5)]
# [(10, 1), (3, 3)]
# [(0, 0), (2, 2), (7, 4)]
# sorted transforms dicts to lists
sorted(ans) # [-3, -1, 0]
sorted(ans.values()) # [[(0, 0), (2, 2), (7, 4)], [(8, 5)], [(10, 1), (3, 3)]]
sorted(ans.items()) # [(-3, [(8, 5)]), (-1, [(10, 1), (3, 3)]), (0, [(0, 0), (2, 2), (7, 4)])]
# Or just sort the dict directly
[ans[i] for i in sorted(ans)]
# [[(8, 5)], [(10, 1), (3, 3)], [(0, 0), (2, 2), (7, 4)]]
for c in s1: # Adds counter for c
ht[c] = ht.get(c, 0) + 1 # ht[a] = 1, ht[a]=2, etc
a = 3
st = set()
st.add(a) # Add to st
st.remove(a) # Remove from st
st.discard(a) # Removes from set with no error
st.add(a) # Add to st
next(iter(s)) # return 3 without removal
st.pop() # returns 3
s = set('abc') # {'c', 'a', 'b'}
s |= set('cdf') # {'f', 'a', 'b', 'd', 'c'} set s with elements from new set
s &= set('bd') # {'d', 'b'} only elements from new set
s -= set('b') # {'d'} remove elements from new set
s ^= set('abd') # {'a', 'b'} elements from s or new but not both
Stacks are implemented with Lists. Stacks are good for parsing and graph traversal
test = [0] * 100 # initialize list with 100 0's
2D
rtn.append([])
rtn[0].append(1) # [[1]]
List Comprehension
number_list = [ x for x in range(20) if x % 2 == 0]
print(number_list) # [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
Reverse a list
ss = [1,2,3]
ss.reverse()
print(ss) #3,2,1
Join list
list1 = ["a", "b" , "c"]
list2 = [1, 2, 3]
list3 = list1 + list2 # ['a', 'b', 'c', 1, 2, 3]
Hashtables are implemented with dictionaries
d = {'key': 'value'} # Declare dict{'key': 'value'}
d['key'] = 'value' # Add Key and Value
{x:0 for x in {'a', 'b'}} # {'a': 0, 'b': 0} declare through comprehension
d['key']) # Access value
d.items() # Items as tuple list dict_items([('key', 'value')])
if 'key' in d: print("meh") # Check if value exists
par = {}
par.setdefault(1,1) # returns 1, makes par = { 1 : 1 }
par = {0:True, 1:False}
par.pop(0) # Remove key 0, Returns True, par now {1: False}
for k in d: print(k) # Iterate through keys
Create Dict of Lists that match length of list to count votes
votes = ["ABC","CBD","BCA"]
rnk = {v:[0] * len(votes[0]) for v in votes[0]}
print(rnk) # {'A': [0, 0, 0], 'B': [0, 0, 0], 'C': [0, 0, 0]}
-
A tree is an undirected graph in which any two vertices are connected by exactly one path.
-
Any connected graph who has n nodes with n-1 edges is a tree.
-
The degree of a vertex is the number of edges connected to the vertex.
-
A leaf is a vertex of degree 1. An internal vertex is a vertex of degree at least 2.
-
A path graph is a tree with two or more vertices with no branches, degree of 2 except for leaves which have degree of 1
-
Any two vertices in G can be connected by a unique simple path.
-
G is acyclic, and a simple cycle is formed if any edge is added to G.
-
G is connected and has no cycles.
-
G is connected but would become disconnected if any single edge is removed from G.
DFS Pre, In Order, and Post order Traversal
- Preorder
- encounters roots before leaves
- Create copy
- Inorder
- flatten tree back to original sequence
- Get values in non-decreasing order in BST
- Post order
- encounter leaves before roots
- Helpful for deleting
Recursive
"""
1
/ \
2 3
/ \
4 5
"""
# PostOrder 4 5 2 3 1 (Left-Right-Root)
def postOrder(node):
if node is None:
return
postorder(node.left)
postorder(node.right)
print(node.value, end=' ')
Iterative PreOrder
# PreOrder 1 2 4 5 3 (Root-Left-Right)
def preOrder(tree_root):
stack = [(tree_root, False)]
while stack:
node, visited = stack.pop()
if node:
if visited:
print(node.value, end=' ')
else:
stack.append((node.right, False))
stack.append((node.left, False))
stack.append((node, True))
Iterative InOrder
# InOrder 4 2 5 1 3 (Left-Root-Right)
def inOrder(tree_root):
stack = [(tree_root, False)]
while stack:
node, visited = stack.pop()
if node:
if visited:
print(node.value, end=' ')
else:
stack.append((node.right, False))
stack.append((node, True))
stack.append((node.left, False))
Iterative PostOrder
# PostOrder 4 5 2 3 1 (Left-Right-Root)
def postOrder(tree_root):
stack = [(tree_root, False)]
while stack:
node, visited = stack.pop()
if node:
if visited:
print(node.value, end=' ')
else:
stack.append((node, True))
stack.append((node.right, False))
stack.append((node.left, False))
Iterative BFS(LevelOrder)
from collections import deque
#BFS levelOrder 1 2 3 4 5
def levelOrder(tree_root):
queue = deque([tree_root])
while queue:
node = queue.popleft()
if node:
print(node.value, end=' ')
queue.append(node.left)
queue.append(node.right)
def levelOrderStack(tree_root):
stk = [(tree_root, 0)]
rtn = []
while stk:
node, depth = stk.pop()
if node:
if len(rtn) < depth + 1:
rtn.append([])
rtn[depth].append(node.value)
stk.append((node.right, depth+1))
stk.append((node.left, depth+1))
print(rtn)
return True
def levelOrderStackRec(tree_root):
rtn = []
def helper(node, depth):
if len(rtn) == depth:
rtn.append([])
rtn[depth].append(node.value)
if node.left:
helper(node.left, depth + 1)
if node.right:
helper(node.right, depth + 1)
helper(tree_root, 0)
print(rtn)
return rtn
Traversing data types as a graph, for example BFS
def removeInvalidParentheses(self, s: str) -> List[str]:
rtn = []
v = set()
v.add(s)
if len(s) == 0: return [""]
while True:
for n in v:
if self.isValid(n):
rtn.append(n)
if len(rtn) > 0: break
level = set()
for n in v:
for i, c in enumerate(n):
if c == '(' or c == ')':
sub = n[0:i] + n[i + 1:len(n)]
level.add(sub)
v = level
return rtn
Reconstructing binary trees
- Binary tree could be constructed from preorder and inorder traversal
- Inorder traversal of BST is an array sorted in the ascending order
Convert tree to array and then to balanced tree
def balanceBST(self, root: TreeNode) -> TreeNode:
self.inorder = []
def getOrder(node):
if node is None:
return
getOrder(node.left)
self.inorder.append(node.val)
getOrder(node.right)
# Get inorder treenode ["1,2,3,4"]
getOrder(root)
# Convert to Tree
# 2
# 1 3
# 4
def bst(listTree):
if not listTree:
return None
mid = len(listTree) // 2
root = TreeNode(listTree[mid])
root.left = bst(listTree[:mid])
root.right = bst(listTree[mid+1:])
return root
return bst(self.inorder)
Build an adjecency graph from edges list
# N = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]]
graph = [[] for _ in range(N)]
for u,v in edges:
graph[u].append(v)
graph[v].append(u)
# [[1, 2], [0], [0, 3, 4, 5], [2], [2], [2]]
Build adjecency graph from traditional tree
adj = collections.defaultdict(list)
def dfs(node):
if node.left:
adj[node].append(node.left)
adj[node.left].append(node)
dfs(node.left)
if node.right:
adj[node].append(node.right)
adj[node.right].append(node)
dfs(node.right)
dfs(root)
Traverse Tree in graph notation
# [[1, 2], [0], [0, 3, 4, 5], [2], [2], [2]]
def dfs(node, par=-1):
for nei in graph[node]:
if nei != par:
res = dfs(nei, node)
dfs(0) # 1->2->3->4->5
1
/ \
2 3
/ \ / \
5 6 8 7
- Implemented as complete binary tree, which has all levels as full excepted deepest
- In a heap tree the node is smaller than its children
import heapq # (minHeap by Default)
nums = [5, 7, 9, 1, 3]
heapq.heapify(nums) # converts list into heap. Can be converted back to list by list(nums).
heapq.heappush(nums,element) # Push an element into the heap
heapq.heappop(nums) # Pop an element from the heap
#heappush(heap, ele) :- This function is used to insert the element mentioned in its arguments into heap. The order is adjusted, so as heap structure is maintained.
#heappop(heap) :- This function is used to remove and return the smallest element from heap. The order is adjusted, so as heap structure is maintained.
# Other Methods Available in the Library
# Used to return the k largest elements from the iterable specified
# The key is a function with that accepts single element from iterable,
# and the returned value from that function is then used to rank that element in the heap
heapq.nlargest(k, iterable, key = fun)
heapq.nsmallest(k, iterable, key = fun)
books = [
{"title": "Book A", "price": 30},
{"title": "Book B", "price": 20},
]
# Function to extract the price from a book dictionary
def get_book_price(book):
return book["price"]
# Find the top 3 most expensive books based on price
top_expensive_books = heapq.nlargest(3, books, key=get_book_price)
# Insert custom objects into the min-heap based on priority
#the tuple (priority,object) is used for custom data structures - custom heap
# Define a custom class representing a task
class Task:
def __init__(self, name, priority):
self.name = name
self.priority = priority
# List of Task objects
tasks = [
Task("Task A", 3),
Task("Task B", 1),
]
# Convert the list of Task objects into a list of tuples (priority, Task)
task_heap = [(task.priority, task) for task in tasks]
# Use heapq.heapify to rearrange the list into a min-heap based on priority
heapq.heapify(task_heap)
Merge sorted iterables
import heapq
# Sorted lists to be merged
list1 = [1, 3, 5]
list2 = [2, 4, 6]
# Merge the sorted lists
merged_iterable = heapq.merge(list1, list2)
# Convert the merged iterable to a list (optional)
merged_list = list(merged_iterable)
print(merged_list) # Output: [1, 2, 3, 4, 5, 6]
Other stuff
def maximumProduct(self, nums: List[int]) -> int:
l = heapq.nlargest(3, nums)
s = heapq.nsmallest(3, nums)
return max(l[0]*l[1]*l[2],s[0]*s[1]*l[0])
Heap elements can be tuples, heappop() frees the smallest element (flip sign to pop largest)
def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
heap = []
for p in points:
distance = sqrt(p[0]* p[0] + p[1]*p[1])
heapq.heappush(heap,(-distance, p))
if len(heap) > K:
heapq.heappop(heap)
return ([h[1] for h in heap])
nsmallest can take a lambda argument
def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
return heapq.nsmallest(K, points, lambda x: x[0]*x[0] + x[1]*x[1])
The key can be a function as well in nsmallest/nlargest
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
count = Counter(nums)
return heapq.nlargest(k, count, count.get)
Tuple sort, 1st/2nd element. increasing frequency then decreasing order
def topKFrequent(self, words: List[str], k: int) -> List[str]:
freq = Counter(words)
return heapq.nsmallest(k, freq.keys(), lambda x:(-freq[x], x))
Can be used with (list).sort(), sorted(), min(), max(), (heapq).nlargest,nsmallest(), map()
# a=3,b=8,target=10
min((b,a), key=lambda x: abs(target - x)) # 8
>>> ids = ['id1', 'id2', 'id30', 'id3', 'id22', 'id100']
>>> print(sorted(ids)) # Lexicographic sort
['id1', 'id100', 'id2', 'id22', 'id3', 'id30']
>>> sorted_ids = sorted(ids, key=lambda x: int(x[2:])) # Integer sort
>>> print(sorted_ids)
['id1', 'id2', 'id3', 'id22', 'id30', 'id100']
trans = lambda x: list(al[i] for i in x) # apple, a->0..
print(trans(words[0])) # [0, 15, 15, 11, 4]
Lambda can sort by 1st, 2nd element in tuple
sorted([('abc', 121),('bbb',23),('abc', 148),('bbb', 24)], key=lambda x: (x[0],x[1]))
# [('abc', 121), ('abc', 148), ('bbb', 23), ('bbb', 24)]
Combine two dicts or lists
s1 = {2, 3, 1}
s2 = {'b', 'a', 'c'}
list(zip(s1, s2)) # [(1, 'a'), (2, 'c'), (3, 'b')]
Traverse in Parallel
letters = ['a', 'b', 'c']
numbers = [0, 1, 2]
for l, n in zip(letters, numbers):
print(f'Letter: {l}') # a,b,c
print(f'Number: {n}') # 0,1,2
Empty in one list is ignored
letters = ['a', 'b', 'c']
numbers = []
for l, n in zip(letters, numbers):
print(f'Letter: {l}') #
print(f'Number: {n}') #
Compare characters of alternating words
for a, b in zip(words, words[1:]):
for c1, c2 in zip(a,b):
print("c1 ", c1, end=" ")
print("c2 ", c2, end=" ")
Passing in * unpacks a list or other iterable, making each of its elements a separate argument.
a = [[1,2],[3,4]]
test = zip(*a)
print(test) # (1, 3) (2, 4)
matrix = [[1,2,3],[4,5,6],[7,8,9]]
test = zip(*matrix)
print(*test) # (1, 4, 7) (2, 5, 8) (3, 6, 9)
Useful when rotating a matrix
# matrix = [[1,2,3],[4,5,6],[7,8,9]]
matrix[:] = zip(*matrix[::-1]) # [[7,4,1],[8,5,2],[9,6,3]]
Iterate through chars in a list of strs
strs = ["cir","car","caa"]
for i, l in enumerate(zip(*strs)):
print(l)
# ('c', 'c', 'c')
# ('i', 'a', 'a')
# ('r', 'r', 'a')
Diagonals can be traversed with the help of a list
"""
[[1,2,3],
[4,5,6],
[7,8,9],
[10,11,12]]
"""
def printDiagonalMatrix(self, matrix: List[List[int]]) -> bool:
R = len(matrix)
C = len(matrix[0])
tmp = [[] for _ in range(R+C-1)]
for r in range(R):
for c in range(C):
tmp[r+c].append(matrix[r][c])
for t in tmp:
for n in t:
print(n, end=' ')
print("")
"""
1,
2,4
3,5,7
6,8,10
9,11
12
"""
for i, l in enumerate(shuffle):
r = random.randrange(0+i, len(shuffle))
shuffle[i], shuffle[r] = shuffle[r], shuffle[i]
return shuffle
Other random generators
import random
ints = [0,1,2]
random.choice(ints) # 0,1,2
random.choices([1,2,3],[1,1,10]) # 3, heavily weighted
random.randint(0,2) # 0,1, 2
random.randint(0,0) # 0
random.randrange(0,0) # error
random.randrange(0,2) # 0,1
max = float('-inf')
min = float('inf')
a if condition else b
test = stk.pop() if stk else '#'
'0b{:04b}'.format(0b1100 & 0b1010) # '0b1000' and
'0b{:04b}'.format(0b1100 | 0b1010) # '0b1110' or
'0b{:04b}'.format(0b1100 ^ 0b1010) # '0b0110' exclusive or
'0b{:04b}'.format(0b1100 >> 2) # '0b0011' shift right
'0b{:04b}'.format(0b0011 << 2) # '0b1100' shift left
Else condition on for loops if break is not called
for w1, w2 in zip(words, words[1:]): #abc, ab
for c1, c2 in zip(w1, w2):
if c1 != c2:
adj[c1].append(c2)
degrees[c2] += 1
break
else: # nobreak
if len(w1) > len(w2):
return "" # Triggers since ab should be before abc, not after
for n in range(-8,8):
print n, n//4, n%4
-8 -2 0
-7 -2 1
-6 -2 2
-5 -2 3
-4 -1 0
-3 -1 1
-2 -1 2
-1 -1 3
0 0 0
1 0 1
2 0 2
3 0 3
4 1 0
5 1 1
6 1 2
7 1 3
if any element of the iterable is True
def any(iterable):
for element in iterable:
if element:
return True
return False
def all(iterable):
for element in iterable:
if not element:
return False
return True
- bisect.bisect_left returns the leftmost place in the sorted list to insert the given element
- bisect.bisect_right returns the rightmost place in the sorted list to insert the given element
import bisect
bisect.bisect_left([1,2,3,4,5], 2) # 1
bisect.bisect_right([1,2,3,4,5], 2) # 2
bisect.bisect_left([1,2,3,4,5], 7) # 5
bisect.bisect_right([1,2,3,4,5], 7) # 5
Insert x in a in sorted order. This is equivalent to a.insert(bisect.bisect_left(a, x, lo, hi), x) assuming that a is already sorted. Search is binary search O(logn) and insert is O(n)
import bisect
l = [1, 3, 7, 5, 6, 4, 9, 8, 2]
result = []
for e in l:
bisect.insort(result, e)
print(result) # [1, 2, 3, 4, 5, 6, 7, 8, 9]
li1 = [1, 3, 4, 4, 4, 6, 7] # [1, 3, 4, 4, 4, 5, 6, 7]
bisect.insort(li1, 5) #
Bisect can give two ends of a range, if the array is sorted of course
s = bisect.bisect_left(nums, target)
e = bisect.bisect(nums, target) -1
if s <= e:
return [s,e]
else:
return [-1,-1]
Calulate power
# (a ^ b) % p.
d = pow(a, b, p)
Division with remainder
divmod(8, 3) # (2, 2)
divmod(3, 8) # (0, 3)
Evaluates an expression
x = 1
print(eval('x + 1'))
Creates iterator from container object such as list, tuple, dictionary and set
mytuple = ("apple", "banana", "cherry")
myit = iter(mytuple)
print(next(myit)) # apple
print(next(myit)) # banana
map(func, *iterables)
my_pets = ['alfred', 'tabitha', 'william', 'arla']
uppered_pets = list(map(str.upper, my_pets)) # ['ALFRED', 'TABITHA', 'WILLIAM', 'ARLA']
my_strings = ['a', 'b', 'c', 'd', 'e']
my_numbers = [1,2,3,4,5]
results = list(map(lambda x, y: (x, y), my_strings, my_numbers)) # [('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', 5)]
A1 = [1, 4, 9]
''.join(map(str, A1))
filter(func, iterable)
scores = [66, 90, 68, 59, 76, 60, 88, 74, 81, 65]
over_75 = list(filter(lambda x: x>75, scores)) # [90, 76, 88, 81]
scores = [66, 90, 68, 59, 76, 60, 88, 74, 81, 65]
def is_A_student(score):
return score > 75
over_75 = list(filter(is_A_student, scores)) # [90, 76, 88, 81]
dromes = ("demigod", "rewire", "madam", "freer", "anutforajaroftuna", "kiosk")
palindromes = list(filter(lambda word: word == word[::-1], dromes)) # ['madam', 'anutforajaroftuna']
Get degrees == 0 from list
stk = list(filter(lambda x: degree[x]==0, degree.keys()))
reduce(func, iterable[, initial]) where initial is optional
numbers = [3, 4, 6, 9, 34, 12]
result = reduce(lambda x, y: x+y, numbers) # 68
result = reduce(lambda x, y: x+y, numbers, 10) #78
itertools.accumulate(iterable[, func]) –> accumulate object
import itertools
data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
list(itertools.accumulate(data)) # [3, 7, 13, 15, 16, 25, 25, 32, 37, 45]
list(accumulate(data, max)) # [3, 4, 6, 6, 6, 9, 9, 9, 9, 9]
cashflows = [1000, -90, -90, -90, -90] # Amortize a 5% loan of 1000 with 4 annual payments of 90
list(itertools.accumulate(cashflows, lambda bal, pmt: bal*1.05 + pmt)) [1000, 960.0, 918.0, 873.9000000000001, 827.5950000000001]
for k,v in groupby("aabbbc") # group by common letter
print(k) # a,b,c
print(list(v)) # [a,a],[b,b,b],[c,c]
RE module allows regular expressions in python
def removeVowels(self, S: str) -> str:
return re.sub('a|e|i|o|u', '', S)
from typing import List, Set, Dict, Tuple, Optional cheat sheet
Useful helpful function
R = len(grid)
C = len(grid[0])
def neighbors(r, c):
for nr, nc in ((r,c-1), (r,c+1), (r-1, c), (r+1,c)):
if 0<=nr<R and 0<=nc<C:
yield nr, nc
def dfs(r,c, index):
area = 0
grid[r][c] = index
for x,y in neighbors(r,c):
if grid[x][y] == 1:
area += dfs(x,y, index)
return area + 1
Stack with appendleft() and popleft()
from collections import deque
deq = deque([1, 2, 3])
deq.appendleft(5)
deq.append(6)
deq
deque([5, 1, 2, 3, 6])
deq.popleft()
5
deq.pop()
6
deq
deque([1, 2, 3])
deque[0] #gets left element
deque[-1] #gets right element
from collections import Counter
count = Counter("hello") # Counter({'h': 1, 'e': 1, 'l': 2, 'o': 1})
count['l'] # 2
count['l'] += 1
count['l'] # 3
Get counter k most common in list of tuples
# [1,1,1,2,2,3]
# Counter [(1, 3), (2, 2)]
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
if len(nums) == k:
return nums
return [n[0] for n in Counter(nums).most_common(k)] # [1,2]
elements() lets you walk through each number in the Counter
def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
c1 = collections.Counter(nums1) # [1,2,2,1]
c2 = collections.Counter(nums2) # [2,2]
dif = c1 & c2 # {2:2}
return list(dif.elements()) # [2,2]
operators work on Counter
c = Counter(a=3, b=1)
d = Counter(a=1, b=2)
c + d # {'a': 4, 'b': 3}
c - d # {'a': 2}
c & d # {'a': 1, 'b': 1}
c | d # {'a': 3, 'b': 2}
c = Counter(a=2, b=-4)
+c # {'a': 2}
-c # {'b': 4}
d={}
print(d['Grapes'])# This gives Key Error
from collections import defaultdict
d = defaultdict(int) # set default
print(d['Grapes']) # 0, no key error
d = collections.defaultdict(lambda: 1)
print(d['Grapes']) # 1, no key error
from collections import defaultdict
dd = defaultdict(list)
dd['key'].append(1) # defaultdict(<class 'list'>, {'key': [1]})
dd['key'].append(2) # defaultdict(<class 'list'>, {'key': [1, 2]})