forked from Sentdex/pygta5
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
a bunch of updates, pushing v0.01-v0.03 code here, updated vjoy testing (xbox360 emulation...etc)
- Loading branch information
Showing
44 changed files
with
5,334 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
import numpy as np | ||
from grabscreen import grab_screen | ||
import cv2 | ||
import time | ||
from getkeys import key_check | ||
import os | ||
|
||
w = [1,0,0,0,0,0,0,0,0] | ||
s = [0,1,0,0,0,0,0,0,0] | ||
a = [0,0,1,0,0,0,0,0,0] | ||
d = [0,0,0,1,0,0,0,0,0] | ||
wa = [0,0,0,0,1,0,0,0,0] | ||
wd = [0,0,0,0,0,1,0,0,0] | ||
sa = [0,0,0,0,0,0,1,0,0] | ||
sd = [0,0,0,0,0,0,0,1,0] | ||
nk = [0,0,0,0,0,0,0,0,1] | ||
|
||
starting_value = 1058 | ||
|
||
while True: | ||
file_name = 'training_data-{}.npy'.format(starting_value) | ||
|
||
if os.path.isfile(file_name): | ||
print('File exists, moving along',starting_value) | ||
starting_value += 1 | ||
else: | ||
print('File does not exist, starting fresh!',starting_value) | ||
|
||
break | ||
|
||
|
||
def keys_to_output(keys): | ||
''' | ||
Convert keys to a ...multi-hot... array | ||
0 1 2 3 4 5 6 7 8 | ||
[W, S, A, D, WA, WD, SA, SD, NOKEY] boolean values. | ||
''' | ||
output = [0,0,0,0,0,0,0,0,0] | ||
|
||
if 'W' in keys and 'A' in keys: | ||
output = wa | ||
elif 'W' in keys and 'D' in keys: | ||
output = wd | ||
elif 'S' in keys and 'A' in keys: | ||
output = sa | ||
elif 'S' in keys and 'D' in keys: | ||
output = sd | ||
elif 'W' in keys: | ||
output = w | ||
elif 'S' in keys: | ||
output = s | ||
elif 'A' in keys: | ||
output = a | ||
elif 'D' in keys: | ||
output = d | ||
else: | ||
output = nk | ||
return output | ||
|
||
|
||
def main(file_name, starting_value): | ||
file_name = file_name | ||
starting_value = starting_value | ||
training_data = [] | ||
for i in list(range(4))[::-1]: | ||
print(i+1) | ||
time.sleep(1) | ||
|
||
last_time = time.time() | ||
paused = False | ||
print('STARTING!!!') | ||
while(True): | ||
|
||
if not paused: | ||
screen = grab_screen(region=(0,40,1920,1120)) | ||
last_time = time.time() | ||
# resize to something a bit more acceptable for a CNN | ||
screen = cv2.resize(screen, (480,270)) | ||
# run a color convert: | ||
screen = cv2.cvtColor(screen, cv2.COLOR_BGR2RGB) | ||
|
||
keys = key_check() | ||
output = keys_to_output(keys) | ||
training_data.append([screen,output]) | ||
|
||
#print('loop took {} seconds'.format(time.time()-last_time)) | ||
last_time = time.time() | ||
## cv2.imshow('window',cv2.resize(screen,(640,360))) | ||
## if cv2.waitKey(25) & 0xFF == ord('q'): | ||
## cv2.destroyAllWindows() | ||
## break | ||
|
||
if len(training_data) % 100 == 0: | ||
print(len(training_data)) | ||
|
||
if len(training_data) == 500: | ||
np.save(file_name,training_data) | ||
print('SAVED') | ||
training_data = [] | ||
starting_value += 1 | ||
file_name = 'X:/pygta5/phase7-larger-color/training_data-{}.npy'.format(starting_value) | ||
|
||
|
||
keys = key_check() | ||
if 'T' in keys: | ||
if paused: | ||
paused = False | ||
print('unpaused!') | ||
time.sleep(1) | ||
else: | ||
print('Pausing!') | ||
paused = True | ||
time.sleep(1) | ||
|
||
|
||
main(file_name, starting_value) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
import numpy as np | ||
from grabscreen import grab_screen | ||
import cv2 | ||
import time | ||
import os | ||
import pandas as pd | ||
from tqdm import tqdm | ||
from collections import deque | ||
from models import inception_v3 as googlenet | ||
from random import shuffle | ||
|
||
|
||
FILE_I_END = 1860 | ||
|
||
WIDTH = 480 | ||
HEIGHT = 270 | ||
LR = 1e-3 | ||
EPOCHS = 30 | ||
|
||
MODEL_NAME = '' | ||
PREV_MODEL = '' | ||
|
||
LOAD_MODEL = True | ||
|
||
wl = 0 | ||
sl = 0 | ||
al = 0 | ||
dl = 0 | ||
|
||
wal = 0 | ||
wdl = 0 | ||
sal = 0 | ||
sdl = 0 | ||
nkl = 0 | ||
|
||
w = [1,0,0,0,0,0,0,0,0] | ||
s = [0,1,0,0,0,0,0,0,0] | ||
a = [0,0,1,0,0,0,0,0,0] | ||
d = [0,0,0,1,0,0,0,0,0] | ||
wa = [0,0,0,0,1,0,0,0,0] | ||
wd = [0,0,0,0,0,1,0,0,0] | ||
sa = [0,0,0,0,0,0,1,0,0] | ||
sd = [0,0,0,0,0,0,0,1,0] | ||
nk = [0,0,0,0,0,0,0,0,1] | ||
|
||
model = googlenet(WIDTH, HEIGHT, 3, LR, output=9, model_name=MODEL_NAME) | ||
|
||
if LOAD_MODEL: | ||
model.load(PREV_MODEL) | ||
print('We have loaded a previous model!!!!') | ||
|
||
|
||
# iterates through the training files | ||
|
||
|
||
for e in range(EPOCHS): | ||
#data_order = [i for i in range(1,FILE_I_END+1)] | ||
data_order = [i for i in range(1,FILE_I_END+1)] | ||
shuffle(data_order) | ||
for count,i in enumerate(data_order): | ||
|
||
try: | ||
file_name = 'J:/phase10-random-padded/training_data-{}.npy'.format(i) | ||
# full file info | ||
train_data = np.load(file_name) | ||
print('training_data-{}.npy'.format(i),len(train_data)) | ||
|
||
## # [ [ [FRAMES], CHOICE ] ] | ||
## train_data = [] | ||
## current_frames = deque(maxlen=HM_FRAMES) | ||
## | ||
## for ds in data: | ||
## screen, choice = ds | ||
## gray_screen = cv2.cvtColor(screen, cv2.COLOR_RGB2GRAY) | ||
## | ||
## | ||
## current_frames.append(gray_screen) | ||
## if len(current_frames) == HM_FRAMES: | ||
## train_data.append([list(current_frames),choice]) | ||
|
||
|
||
# # | ||
# always validating unique data: | ||
#shuffle(train_data) | ||
train = train_data[:-50] | ||
test = train_data[-50:] | ||
|
||
X = np.array([i[0] for i in train]).reshape(-1,WIDTH,HEIGHT,3) | ||
Y = [i[1] for i in train] | ||
|
||
test_x = np.array([i[0] for i in test]).reshape(-1,WIDTH,HEIGHT,3) | ||
test_y = [i[1] for i in test] | ||
|
||
model.fit({'input': X}, {'targets': Y}, n_epoch=1, validation_set=({'input': test_x}, {'targets': test_y}), | ||
snapshot_step=2500, show_metric=True, run_id=MODEL_NAME) | ||
|
||
|
||
if count%10 == 0: | ||
print('SAVING MODEL!') | ||
model.save(MODEL_NAME) | ||
|
||
except Exception as e: | ||
print(str(e)) | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
# | ||
|
||
#tensorboard --logdir=foo:J:/phase10-code/log | ||
|
Oops, something went wrong.