Original Ultralytics compatible. (You can pretrain your model befor QAT as original way using this repository)
Install editable package in your environment by pip install -e .
python qat_pytorch.py \
--model-config ${model_config_yaml_file} \
--pretrained-weight ${path_to_your_pretrained_weight} \
--data-config ${path_to_your_data_config_file}
You need to install pytorch_quantization
package
python qat_nvidia.py \
--model-config ${model_config_yaml_file} \
--pretrained-weight ${path_to_your_pretrained_weight} \
--data-config ${path_to_your_data_config_file}
- end-to-end export to TensorRT engine(when using pytorch_quantization)
- code refactoring
- find other ways to improve mAP after QAT
https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html#quantization-aware-training