- pytorch (https://pytorch.org/)
- Install the following lib/toolbox (also
python setup.py install
):sudo apt-get install openexr libopenexr-dev
- skylibs (https://github.com/weberhen/skylibs.git)
- pytorch_toolbox (https://github.com/weberhen/pytorch_toolbox)
python setup.py install
-
Link to the pre-trained illumination predictor models (183MB).
-
Link to the LDR datasets to train the illumination predictor. (3.5GB)
-
place the models at
/learning_indoor_lighting/IlluminationPredictor/models
. Ex:models/bun_zipper_glossy/model_best.pth.tar
-
place the datasets at
/learning_indoor_lighting/Datasets
. Ex:Datasets/indoor_hdr/train
andDatasets/objects_ldr/bun_zipper_glossy/train
Activate visdom in another terminal:
python -m visdom.server
Then go to the terminal: localhost:8097
cd learning_indoor_lighting/AutoEncoder && python test.py
cd learning_indoor_lighting/IlluminationPredictor && python test.py
@inproceedings{weber_3dv_18,
author = {Henrique Weber and
Donald Pr{\'{e}}vost and
Jean{-}Fran{\c{c}}ois Lalonde},
title = {Learning to Estimate Indoor Lighting from 3D Objects},
booktitle = {International Conference on 3D Vision, Verona, Italy},
pages = {199--207},
year = {2018},
}