Skip to content

weifengliu-ssslab/Benchmark_SpMV_using_CSR5

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Benchmark_SpMV_using_CSR5



Introduction

This is the source code of the paper

Weifeng Liu and Brian Vinter, "CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication". In Proceedings of the 29th ACM international conference on Supercomputing (ICS '15), pp.339-350, 2015. [pdf][slides]

Contact: Weifeng Liu and Brian Vinter (vinter at nbi.ku.dk).

Updates:
   (Jan 2017, avx512 and opencl): added two versions: AVX-512 for Knights Landing Phi (KNL) and OpenCL for nVidia GPUs.
   (Jul 2016, phi): fixed the same two issues in the original AVX2 version. Thanks Jan Philipp Ecker!
   (Jul 2016, avx2): Improved performance of y-vector update. Thanks Jan Philipp Ecker!
   (Jul 2016, avx2): Fixed a bug in processing small matrices. Thanks Jan Philipp Ecker!
   (Apr 2016, cuda): Fixed a bug in timing. Thanks Shigang Li!



CPU (AVX2) version

  • Execution
  1. Set environments for the Intel C/C++ Compilers. For example, use source /opt/intel/composer_xe_2015.1.133/bin/compilervars.sh intel64,
  2. Run make,
  3. Run ./spmv example.mtx.
  • Tested environments
  1. Intel Core i7-4770R CPU with Ubuntu 14.04 64-bit Linux installed.
  2. Intel Xeon E5-2667 v3 dual-socket CPUs with Redhat 6.5 64-bit Linux installed.
  • Data type
  1. Currently, only 64-bit double precision SpMV is supported.



Intel Xeon Knights Landing Phi (KNL) AVX-512 version

  • Execution
  1. Set environments for the Intel C/C++ Compilers. For example, use source /opt/intel/composer_xe_2015.1.133/bin/compilervars.sh intel64,
  2. Run make,
  3. Run ./spmv example.mtx.
  • Tested environments
  1. Intel Xeon Kinghts Landing Phi (KNL) 7210 in a host with CentOS 7.2 64-bit Linux installed.
  • Data type
  1. Currently, only 64-bit double precision SpMV is supported.



nVidia GPU (CUDA) version

  • Execution
  1. Set CUDA path in the Makefile,
  2. Run make,
  3. Run ./spmv example.mtx.
  • Tested environments
  1. nVidia GeForce GTX 980 GPU in a host with Ubuntu 14.04 64-bit Linux installed.
  2. nVidia GeForce GT 650M GPU in a host with Mac OS X 10.9.2 installed.
  • Data type
  1. The code supports both double precision and single precision SpMV. Use make VALUE_TYPE=double for double precision or make VALUE_TYPE=float for single precision.



AMD GPU (OpenCL) version

  • Execution
  1. Set OpenCL path in the Makefile,
  2. Run make,
  3. Run ./spmv example.mtx.
  • Tested environments
  1. AMD Radeon R9-290X GPU in a host with Ubuntu 14.04 64-bit Linux installed.
  • Data type
  1. The code supports both double precision and single precision SpMV. Use make VALUE_TYPE=double for double precision or make VALUE_TYPE=float for single precision.



nVidia GPU (OpenCL) version

  • Execution
  1. Set OpenCL path in the Makefile,
  2. Run make,
  3. Run ./spmv example.mtx.
  • Tested environments
  1. nVidia Pascal GTX 1060 GPU in a host with Ubuntu 15.04 64-bit Linux installed.
  • Data type
  1. The code supports both double precision and single precision SpMV. Use make VALUE_TYPE=double for double precision or make VALUE_TYPE=float for single precision.



Intel Xeon Phi (KNC) version

  • Execution
  1. Set environments for the Intel C/C++ Compilers. For example, use source /opt/intel/composer_xe_2015.1.133/bin/compilervars.sh intel64,
  2. Run make,
  3. Run ./spmv example.mtx.
  • Tested environments
  1. Intel Xeon Phi 5110p in a host with Redhat 6.5 64-bit Linux installed.
  • Data type
  1. Currently, only 64-bit double precision SpMV is supported.

About

CSR5-based SpMV on CPUs, GPUs and Xeon Phi

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •