Skip to content

Commit

Permalink
Update Chinese Translation (microsoft#2871)
Browse files Browse the repository at this point in the history
* New Crowdin translations by Github Action

* remove removed files in en_US

Co-authored-by: Crowdin Bot <[email protected]>
  • Loading branch information
JunweiSUN and crowdin-bot authored Sep 18, 2020
1 parent 171400e commit 0e49e65
Show file tree
Hide file tree
Showing 65 changed files with 1,249 additions and 790 deletions.
9 changes: 5 additions & 4 deletions README_zh_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@

**NNI (Neural Network Intelligence)** 是一个轻量但强大的工具包,帮助用户**自动**的进行[特征工程](docs/zh_CN/FeatureEngineering/Overview.md)[神经网络架构搜索](docs/zh_CN/NAS/Overview.md)[超参调优](docs/zh_CN/Tuner/BuiltinTuner.md)以及[模型压缩](docs/zh_CN/Compressor/Overview.md)

NNI 管理自动机器学习 (AutoML) 的 Experiment,**调度运行**由调优算法生成的 Trial 任务来找到最好的神经网络架构和/或超参,支持**各种训练环境**,如[本机](docs/zh_CN/TrainingService/LocalMode.md)[远程服务器](docs/zh_CN/TrainingService/RemoteMachineMode.md)[OpenPAI](docs/zh_CN/TrainingService/PaiMode.md)[Kubeflow](docs/zh_CN/TrainingService/KubeflowMode.md)[基于 K8S 的 FrameworkController(如,AKS 等)](docs/zh_CN/TrainingService/FrameworkControllerMode.md)[DLWorkspace (又称 DLTS)](docs/zh_CN/TrainingService/DLTSMode.md) 和其它云服务
NNI 管理自动机器学习 (AutoML) 的 Experiment,**调度运行**由调优算法生成的 Trial 任务来找到最好的神经网络架构和/或超参,支持**各种训练环境**,如[本机](docs/zh_CN/TrainingService/LocalMode. md),[远程服务器](docs/zh_CN/TrainingService/RemoteMachineMode. md),[OpenPAI](docs/zh_CN/TrainingService/PaiMode. md),[Kubeflow](docs/zh_CN/TrainingService/KubeflowMode. md),[基于 K8S 的 FrameworkController(如,AKS 等)](docs/zh_CN/TrainingService/FrameworkControllerMode. md), [DLWorkspace](docs/zh_CN/TrainingService/DLTSMode. md) (又称 DLTS)</a>, [AML](docs/zh_CN/TrainingService/AMLMode.md) (Azure Machine Learning) 以及其它环境

## **使用场景**

Expand All @@ -19,7 +19,7 @@ NNI 管理自动机器学习 (AutoML) 的 Experiment,**调度运行**由调优
* 想要更容易**实现或试验新的自动机器学习算法**的研究员或数据科学家,包括:超参调优算法,神经网络搜索算法以及模型压缩算法。
* 在机器学习平台中**支持自动机器学习**

### **[NNI v1.6 已发布!](https://github.com/microsoft/nni/releases) &nbsp;[<img width="48" src="docs/img/release_icon.png" />](#nni-released-reminder)**
### **[NNI v1.8 已发布!](https://github.com/microsoft/nni/releases) &nbsp;[<img width="48" src="docs/img/release_icon.png" />](#nni-released-reminder)**

## **NNI 功能一览**

Expand Down Expand Up @@ -164,6 +164,7 @@ NNI 提供命令行工具以及友好的 WebUI 来管理训练的 Experiment。
<ul>
<li><a href="docs/zh_CN/TrainingService/LocalMode.md">本机</a></li>
<li><a href="docs/zh_CN/TrainingService/RemoteMachineMode.md">远程计算机</a></li>
<li><a href="docs/zh_CN/TrainingService/AMLMode.md">AML(Azure Machine Learning)</a></li>
<li><b>基于 Kubernetes 的平台</b></li>
<ul><li><a href="docs/zh_CN/TrainingService/PaiMode.md">OpenPAI</a></li>
<li><a href="docs/zh_CN/TrainingService/KubeflowMode.md">Kubeflow</a></li>
Expand Down Expand Up @@ -208,7 +209,7 @@ NNI 提供命令行工具以及友好的 WebUI 来管理训练的 Experiment。

### **安装**

NNI 支持并在 Ubuntu >= 16.04, macOS >= 10.14.1, 和 Windows 10 >= 1809 通过了测试。 在 `python 64-bit >= 3.5` 的环境中,只需要运行 `pip install` 即可完成安装。
NNI 支持并在 Ubuntu >= 16.04, macOS >= 10.14.1, 和 Windows 10 >= 1809 通过了测试。 在 `python 64-bit >= 3.6` 的环境中,只需要运行 `pip install` 即可完成安装。

Linux 或 macOS

Expand Down Expand Up @@ -239,7 +240,7 @@ Linux 和 macOS 下 NNI 系统需求[参考这里](https://nni.readthedocs.io/zh
* 通过克隆源代码下载示例。

```bash
git clone -b v1.6 https://github.com/Microsoft/nni.git
git clone -b v1.8 https://github.com/Microsoft/nni.git
```

* 运行 MNIST 示例。
Expand Down
20 changes: 11 additions & 9 deletions deployment/docker/README_zh_CN.md
Original file line number Diff line number Diff line change
@@ -1,18 +1,20 @@
# Dockerfile
# Dockerfile

## 1. 说明

这是 NNI 项目的 Dockerfile 文件。 其中包含了 NNI 以及多个流行的深度学习框架。 在 `Ubuntu 16.04 LTS` 上进行过测试:

CUDA 9.0, CuDNN 7.0
numpy 1.14.3,scipy 1.1.0
TensorFlow-gpu 1.10.0
Keras 2.1.6
PyTorch 0.4.1
scikit-learn 0.20.0
CUDA 9.0
CuDNN 7.0
numpy 1.14.3
scipy 1.1.0
tensorflow-gpu 1.15.0
keras 2.1.6
torch 1.4.0
scikit-learn 0.23.2
pandas 0.23.4
lightgbm 2.2.2
NNI v0.7
nni


此 Dockerfile 可作为定制的参考。
Expand Down Expand Up @@ -47,4 +49,4 @@

使用下列命令从 docker Hub 中拉取 NNI docker 映像。

docker pull msranni/nni:latest
docker pull msranni/nni:latest
2 changes: 1 addition & 1 deletion docs/zh_CN/Assessor/CustomizeAssessor.md
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ assessor:
注意在 **2** 中, `trial_history` 对象与 Trial 通过 `report_intermediate_result` 函数返回给 Assessor 的对象完全一致。

Assessor 的工作目录是`<home>/nni/experiments/<experiment_id>/log` 可从环境变量 `NNI_LOG_DIRECTORY` 中获取。
Assessor 的工作目录是`<home>/nni-experiments/<experiment_id>/log` 可从环境变量 `NNI_LOG_DIRECTORY` 中获取。

更多示例,可参考:

Expand Down
Original file line number Diff line number Diff line change
@@ -1,15 +1,14 @@
# 超参数优化的对比

*匿名作者*

超参优化算法(HPO)在几个问题上的对比。

超参数优化算法如下:

- [Random Search(随机搜索)](../Tuner/BuiltinTuner.md)
- [Grid Search(遍历搜索)](../Tuner/BuiltinTuner.md)
- [Random Search](../Tuner/BuiltinTuner.md)
- [Grid Search](../Tuner/BuiltinTuner.md)
- [Evolution](../Tuner/BuiltinTuner.md)
- [Anneal(退火算法)](../Tuner/BuiltinTuner.md)
- [Anneal](../Tuner/BuiltinTuner.md)
- [Metis](../Tuner/BuiltinTuner.md)
- [TPE](../Tuner/BuiltinTuner.md)
- [SMAC](../Tuner/BuiltinTuner.md)
Expand All @@ -20,15 +19,16 @@

环境:

OS: Linux Ubuntu 16.04 LTS
CPU: Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz 2600 MHz
Memory: 112 GB
NNI Version: v0.7
NNI 模式(local|pai|remote): local
Python 版本: 3.6
使用的虚拟环境: Conda
是否在 Docker 中运行: no

```
OS: Linux Ubuntu 16.04 LTS
CPU: Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz 2600 MHz
Memory: 112 GB
NNI Version: v0.7
NNI 模式(local|pai|remote): local
Python 版本: 3.6
使用的虚拟环境: Conda
是否在 Docker 中运行: no
```

## AutoGBDT 示例

Expand Down Expand Up @@ -67,40 +67,40 @@
}
```

总搜索空间为 1, 204, 224 次,将最大 Trial 次数设置为1000。 时间限制为 48 小时。
总搜索空间为 1, 204, 224 次,将最大 Trial 次数设置为 1000。 时间限制为 48 小时。

### 结果

| 算法 | 最好的损失值 | 最好的 5 次损失的平均值 | 最好的 10 次损失的平均 |
| ------------- | ------------ | ------------- | ------------- |
| Random Search | 0.418854 | 0.420352 | 0.421553 |
| Random Search | 0.417364 | 0.420024 | 0.420997 |
| Random Search | 0.417861 | 0.419744 | 0.420642 |
| Grid Search | 0.498166 | 0.498166 | 0.498166 |
| Evolution | 0.409887 | 0.409887 | 0.409887 |
| Evolution | 0.413620 | 0.413875 | 0.414067 |
| Evolution | 0.409887 | 0.409887 | 0.409887 |
| Anneal | 0.414877 | 0.417289 | 0.418281 |
| Anneal | 0.409887 | 0.409887 | 0.410118 |
| Anneal | 0.413683 | 0.416949 | 0.417537 |
| Metis | 0.416273 | 0.420411 | 0.422380 |
| Metis | 0.420262 | 0.423175 | 0.424816 |
| Metis | 0.421027 | 0.424172 | 0.425714 |
| TPE | 0.414478 | 0.414478 | 0.414478 |
| TPE | 0.415077 | 0.417986 | 0.418797 |
| TPE | 0.415077 | 0.417009 | 0.418053 |
| SMAC | **0.408386** | **0.408386** | **0.408386** |
| SMAC | 0.414012 | 0.414012 | 0.414012 |
| SMAC | **0.408386** | **0.408386** | **0.408386** |
| BOHB | 0.410464 | 0.415319 | 0.417755 |
| BOHB | 0.418995 | 0.420268 | 0.422604 |
| BOHB | 0.415149 | 0.418072 | 0.418932 |
| HyperBand | 0.414065 | 0.415222 | 0.417628 |
| HyperBand | 0.416807 | 0.417549 | 0.418828 |
| HyperBand | 0.415550 | 0.415977 | 0.417186 |
| GP | 0.414353 | 0.418563 | 0.420263 |
| GP | 0.414395 | 0.418006 | 0.420431 |
| GP | 0.412943 | 0.416566 | 0.418443 |
| 算法 | 最好的损失值 | 最好的 5 次损失的平均值 | 最好的 10 次损失的平均值 |
| ------------- | ------------ | ------------- | -------------- |
| Random Search | 0.418854 | 0.420352 | 0.421553 |
| Random Search | 0.417364 | 0.420024 | 0.420997 |
| Random Search | 0.417861 | 0.419744 | 0.420642 |
| Grid Search | 0.498166 | 0.498166 | 0.498166 |
| Evolution | 0.409887 | 0.409887 | 0.409887 |
| Evolution | 0.413620 | 0.413875 | 0.414067 |
| Evolution | 0.409887 | 0.409887 | 0.409887 |
| Anneal | 0.414877 | 0.417289 | 0.418281 |
| Anneal | 0.409887 | 0.409887 | 0.410118 |
| Anneal | 0.413683 | 0.416949 | 0.417537 |
| Metis | 0.416273 | 0.420411 | 0.422380 |
| Metis | 0.420262 | 0.423175 | 0.424816 |
| Metis | 0.421027 | 0.424172 | 0.425714 |
| TPE | 0.414478 | 0.414478 | 0.414478 |
| TPE | 0.415077 | 0.417986 | 0.418797 |
| TPE | 0.415077 | 0.417009 | 0.418053 |
| SMAC | **0.408386** | **0.408386** | **0.408386** |
| SMAC | 0.414012 | 0.414012 | 0.414012 |
| SMAC | **0.408386** | **0.408386** | **0.408386** |
| BOHB | 0.410464 | 0.415319 | 0.417755 |
| BOHB | 0.418995 | 0.420268 | 0.422604 |
| BOHB | 0.415149 | 0.418072 | 0.418932 |
| HyperBand | 0.414065 | 0.415222 | 0.417628 |
| HyperBand | 0.416807 | 0.417549 | 0.418828 |
| HyperBand | 0.415550 | 0.415977 | 0.417186 |
| GP | 0.414353 | 0.418563 | 0.420263 |
| GP | 0.414395 | 0.418006 | 0.420431 |
| GP | 0.412943 | 0.416566 | 0.418443 |

此例中,所有算法都使用了默认参数。 Metis 算法因为其高斯计算过程的复杂度为 O(n^3) 而运行非常慢,因此仅执行了 300 次 Trial。

Expand All @@ -114,21 +114,22 @@

#### 计算机配置

RocksDB: version 6.1
CPU: 6 * Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz
CPUCache: 35840 KB
Keys: 16 bytes each
Values: 100 bytes each (50 bytes after compression)
Entries: 1000000

```
RocksDB: version 6.1
CPU: 6 * Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz
CPUCache: 35840 KB
Keys: 16 bytes each
Values: 100 bytes each (50 bytes after compression)
Entries: 1000000
```

#### 存储性能

**延迟**:每个 IO 请求都需要一些时间才能完成,这称为平均延迟。 有几个因素会影响此时间,包括网络连接质量和硬盘IO性能。

**IOPS** **每秒的 IO 操作数量**这意味着可以在一秒钟内完成的*读取或写入操作次数*
**IOPS****每秒的 IO 操作数量**这意味着可以在一秒钟内完成的_读取或写入操作次数_

**IO 大小** **每个 IO 请求的大小**。 根据操作系统和需要磁盘访问的应用程序、服务,它将同时发出读取或写入一定数量数据的请求。
**IO 大小****每个 IO 请求的大小**。 根据操作系统和需要磁盘访问的应用程序、服务,它将同时发出读取或写入一定数量数据的请求。

**吞吐量(以 MB/s 为单位)= 平均 IO 大小 x IOPS **

Expand Down Expand Up @@ -200,7 +201,7 @@ IOPS 与在线处理能力有关,我们在实验中使用 IOPS 作为指标。
| SMAC | 491067 | 490472 | **491136** |
| Metis | 444920 | 457060 | 454438 |

Figure:
图:

![](../../img/hpo_rocksdb_fillrandom.png)

Expand All @@ -215,6 +216,6 @@ Figure:
| SMAC | 2270874 | 2284904 | 2282266 |
| Metis | **2287696** | 2283496 | 2277701 |

Figure:
图:

![](../../img/hpo_rocksdb_readrandom.png)
![](../../img/hpo_rocksdb_readrandom.png)
82 changes: 82 additions & 0 deletions docs/zh_CN/CommunitySharings/ModelCompressionComparison.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# 滤波器剪枝算法比较

为了初步了解各种滤波器剪枝算法的性能,在一些基准模型和数据集上使用各种剪枝算法进行了广泛的实验。 此文档中展示了实验结果。 此外,还对这些实验的复现提供了友好的说明,以促进对这项工作的进一步贡献。

## 实验设置

实验使用以下剪枝器/数据集/模型进行:

* 模型:[VGG16, ResNet18, ResNet50](https://github.com/microsoft/nni/tree/master/examples/model_compress/models/cifar10)

* 数据集:CIFAR-10

* 剪枝器:
- 剪枝器包括:
- 迭代式剪枝器 : `SimulatedAnnealing Pruner`, `NetAdapt Pruner`, `AutoCompress Pruner`。 给定总体稀疏度要求,这类剪枝器可以在不同层中自动分配稀疏度。
- 单轮剪枝器:`L1Filter Pruner``L2Filter Pruner``FPGM Pruner`。 每层的稀疏度与实验设置的总体稀疏度相同。
- 这里只比较 **filter pruning** 的剪枝效果。

对于迭代式剪枝器,使用 `L1Filter Pruner` 作为基础算法。 也就是说, 在迭代式剪枝器决定了稀疏度分布之后,使用 `L1Filter Pruner` 进行真正的剪枝。

- 上面列出来的所有的剪枝器都已经在 [NNI](https://github.com/microsoft/nni/tree/master/docs/zh_CN/Compressor/Overview.md) 中实现。

## 实验结果

对于每一个数据集/模型/剪枝器的组合,设置不同的目标稀疏度对模型进行剪枝。

这里展示了**权重数量 - 性能**曲线,还展示了**FLOPs - 性能**曲线。 同时在图上画出论文 [AutoCompress: An Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates](http://arxiv.org/abs/1907.03141) 中对 VGG16 和 ResNet18 在 CIFAR-10 上的剪枝结果作为对比。

实验结果如下图所示:

CIFAR-10, VGG16:

![](../../../examples/model_compress/comparison_of_pruners/img/performance_comparison_vgg16.png)

CIFAR-10, ResNet18:

![](../../../examples/model_compress/comparison_of_pruners/img/performance_comparison_resnet18.png)

CIFAR-10, ResNet50:

![](../../../examples/model_compress/comparison_of_pruners/img/performance_comparison_resnet50.png)

## 分析

从实验结果中,得到以下结论:

* 如果稀疏度是通过限制参数量,那么迭代式剪枝器 ( `AutoCompress Pruner` , `SimualatedAnnealing Pruner` ) 比单轮剪枝器表现好。 但是在以 FLOPs 稀疏度为标准的情况下,它们相比于单轮剪枝器就没有了优势,因为当前的这些剪枝算法都是根据参数稀疏度来剪枝的。
* 在上述实验中,简单的单轮剪枝器 `L1Filter Pruner` , `L2Filter Pruner` , `FPGM Pruner` 表现比较相近。
* `NetAdapt Pruner` 无法达到比较高的压缩率。 因为它的机制是一次迭代只剪枝一层。 这就导致如果每次迭代剪掉的稀疏度远小于指定的总的稀疏度的话,会导致不可接受的剪枝复杂度。

## 实验复现

### 实现细节

* 实验结果都是在 NNI 中使用剪枝器的默认配置收集的,这意味着当我们在 NNI 中调用一个剪枝器类时,我们不会更改任何默认的类参数。

* FLOPs 和 参数数量均通过 [模型 FLOPs 和参数计数器](https://github.com/microsoft/nni/blob/master/docs/zh_CN/Compressor/CompressionUtils.md#model-flopsparameters-counter)[模型加速](https://github.com/microsoft/nni/blob/master/docs/zh_CN/Compressor/ModelSpeedup.md)后计算。 这避免了依据掩码模型计算的潜在问题。

* 实验代码在[这里](https://github.com/microsoft/nni/tree/master/examples/model_compress/auto_pruners_torch.py)

### 实验结果展示

* 如果遵循[示例](https://github.com/microsoft/nni/tree/master/examples/model_compress/auto_pruners_torch.py)的做法,对于每一次剪枝实验,实验结果将以JSON格式保存如下:
``` json
{
"performance": {"original": 0.9298, "pruned": 0.1, "speedup": 0.1, "finetuned": 0.7746},
"params": {"original": 14987722.0, "speedup": 167089.0},
"flops": {"original": 314018314.0, "speedup": 38589922.0}
}
```

* 实验结果保存在[这里](https://github.com/microsoft/nni/tree/master/examples/model_compress/comparison_of_pruners)。 可以参考[分析](https://github.com/microsoft/nni/blob/master/examples/model_compress/comparison_of_pruners/analyze.py)来绘制新的性能比较图。

## 贡献

### 待办事项

* 有 FLOPS/延迟 限制的剪枝器
* 更多剪枝算法/数据集/模型

### 问题
关于算法实现及实验问题,请[发起 issue](https://github.com/microsoft/nni/issues/new/)。
44 changes: 44 additions & 0 deletions docs/zh_CN/CommunitySharings/NNI_colab_support.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@

# 在 Google Colab 上使用 NNI
在 Google Colab 上轻松使用 NNI。 Colab 没有暴露它的公网 IP 及端口,因此默认情况下无法在 Colab 中访问 NNI 的 Web 界面。 为解决此问题,需要使用反向代理软件,例如 `ngrok``frp`。 此教程将展示如何使用 ngrok 在 Colab 上访问 NNI 的Web 界面。

## 如何在 Google Colab 上打开 NNI 的 Web 界面

1. 安装需要的包和软件。


```
! pip install nni # install nni
! wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip # download ngrok and unzip it
! unzip ngrok-stable-linux-amd64.zip
! mkdir -p nni_repo
! git clone https://github.com/microsoft/nni.git nni_repo/nni # clone NNI's offical repo to get examples
```

2.[此处](https://ngrok.com/)注册 ngrok 账号,然后通过 authtoken 来连接。


```
! ./ngrok authtoken <your-authtoken>
```

3. 在大于 1024 的端口号上启动 NNI 样例,之后在相同端口上启动 ngrok。 如果希望使用 GPU,确保 config.yml 中 gpuNum >= 1 。 因为使用 `! ngrok http 5000 &` 会停止响应,要使用 </0> get_ipython()</code> 来启动 ngrok。


```
! nnictl create --config nni_repo/nni/examples/trials/mnist-pytorch/config.yml --port 5000 &
get_ipython().system_raw('./ngrok http 5000 &')
```

4. 查看公网 url 。


```
! curl -s http://localhost:4040/api/tunnels # don't change the port number 4040
```

在步骤 4 后将会看到类似 http://xxxx.ngrok.io 的 url,打开此url即可看到 NNI 的Web 界面。 玩得开心 :)

## 使用 frp 访问 Web 界面

frp 是另一款提供了相似功能的反向代理软件。 但 frp 不提供免费的公网 url,因此可能需要一台拥有公网 IP 的服务器来作为 frp 的服务器端。 参考[这里](https://github.com/fatedier/frp)来了解如何部署 frp。
Loading

0 comments on commit 0e49e65

Please sign in to comment.