-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
640 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
--- | ||
title: "hw7-wenqi" | ||
output: html_document | ||
--- | ||
|
||
```{r setup, include=FALSE} | ||
knitr::opts_chunk$set(echo = TRUE) | ||
``` | ||
|
||
|
||
```{r} | ||
library(keras) | ||
library('rgl') | ||
library('ElemStatLearn') | ||
library('nnet') | ||
library('dplyr') | ||
## load binary classification example data | ||
data("mixture.example") | ||
dat <- mixture.example | ||
``` | ||
|
||
```{r} | ||
img_dat <- matrix(nrow=200,ncol=2) | ||
img_dat[,1]<- dat$x[,1] | ||
img_dat[,2]<- dat$x[,2] | ||
``` | ||
|
||
|
||
```{r} | ||
model <- keras_model_sequential() | ||
model <- model %>% | ||
layer_flatten(input_shape = c(2, 200)) %>% | ||
layer_dense(units = 128, activation = 'relu') %>% | ||
layer_dense(units = 10, activation = 'softmax') | ||
model <- model %>% compile( | ||
optimizer = 'adam', | ||
loss = 'sparse_categorical_crossentropy', | ||
metrics = c('accuracy') | ||
) | ||
``` | ||
|
||
|
||
|
||
|
||
|
||
```{r} | ||
## create 3D plot of mixture data | ||
plot_mixture_data <- function(dat=mixture.example, showtruth=FALSE) { | ||
## create 3D graphic, rotate to view 2D x1/x2 projection | ||
par3d(FOV=1,userMatrix=diag(4)) | ||
plot3d(dat$xnew[,1], dat$xnew[,2], dat$prob, type="n", | ||
xlab="x1", ylab="x2", zlab="", | ||
axes=FALSE, box=TRUE, aspect=1) | ||
## plot points and bounding box | ||
x1r <- range(dat$px1) | ||
x2r <- range(dat$px2) | ||
pts <- plot3d(dat$x[,1], dat$x[,2], 1, | ||
type="p", radius=0.5, add=TRUE, | ||
col=ifelse(dat$y, "orange", "blue")) | ||
lns <- lines3d(x1r[c(1,2,2,1,1)], x2r[c(1,1,2,2,1)], 1) | ||
if(showtruth) { | ||
## draw Bayes (True) classification boundary | ||
probm <- matrix(dat$prob, length(dat$px1), length(dat$px2)) | ||
cls <- contourLines(dat$px1, dat$px2, probm, levels=0.5) | ||
pls <- lapply(cls, function(p) | ||
lines3d(p$x, p$y, z=1, col='purple', lwd=3)) | ||
## plot marginal probability surface and decision plane | ||
sfc <- surface3d(dat$px1, dat$px2, dat$prob, alpha=1.0, | ||
color="gray", specular="gray") | ||
qds <- quads3d(x1r[c(1,2,2,1)], x2r[c(1,1,2,2)], 0.5, alpha=0.4, | ||
color="gray", lit=FALSE) | ||
} | ||
} | ||
## compute and plot predictions | ||
plot_nnet_predictions <- function(fit, dat=mixture.example) { | ||
## create figure | ||
plot_mixture_data() | ||
## compute predictions from nnet | ||
preds <- predict(fit, dat$xnew, type="class") | ||
probs <- predict(fit, dat$xnew, type="raw")[,1] | ||
probm <- matrix(probs, length(dat$px1), length(dat$px2)) | ||
cls <- contourLines(dat$px1, dat$px2, probm, levels=0.5) | ||
## plot classification boundary | ||
pls <- lapply(cls, function(p) | ||
lines3d(p$x, p$y, z=1, col='purple', lwd=2)) | ||
## plot probability surface and decision plane | ||
sfc <- surface3d(dat$px1, dat$px2, probs, alpha=1.0, | ||
color="gray", specular="gray") | ||
qds <- quads3d(x1r[c(1,2,2,1)], x2r[c(1,1,2,2)], 0.5, alpha=0.4, | ||
color="gray", lit=FALSE) | ||
} | ||
## plot data and 'true' probability surface | ||
plot_mixture_data(showtruth=TRUE) | ||
## fit single hidden layer, fully connected NN | ||
## 10 hidden nodes | ||
fit <- nnet(x=dat$x, y=dat$y, size=10, entropy=TRUE, decay=0) | ||
``` | ||
|
Oops, something went wrong.