Skip to content
/ DGTR Public
forked from iSEE-Laboratory/DGTR

Official Code for Dexterous Grasp Transformer (CVPR 2024)

License

Notifications You must be signed in to change notification settings

whuhxb/DGTR

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dexterous Grasp Transformer

Guo-Hao Xu*, Yi-Lin Wei*, Dian Zheng, Xiao-Ming Wu, Wei-Shi Zheng

-

(CVPR 2024) Official repository of paper "Dexterous Grasp Transformer".

Installation

  1. Create a new conda environment
conda create -n dgtr python=3.8
  1. Install pytorch
conda install pytorch==1.10.0 torchvision==0.11.0 cudatoolkit=11.3 -c pytorch -c conda-forge
  1. Install pytorch3d
  • Download source code of pytorch3d 0.7.2 from link and unzip it.
cd pytorch3d && pip install -e .
  1. Install other dependencies
conda install -c plotly 
conda install -c conda-forge trimesh pyyaml tqdm plyfile multimethod
conda install scipy
conda install -c anaconda lxml
conda install tensorboard
  1. Install pytorch_kinematics
cd thirdparty/pytorch_kinematics
pip install -e .
  1. Install CSDF
cd thirdparty/CSDF
pip install -e .
  1. Install pointnet2
cd thirdparty/pointnet2
python setup.py install
  1. Install knn
cd thirdparty/knn
python setup.py install
  1. Install rtree
pip install rtree
  1. If you have encountered setuptools-related error, this may help:
pip install setuptools==59.5.0

Data Preparation

  1. We pre-sample the object point clouds from DexGraspNet and save them as h5 files to accelerate data processing. The training and testing h5 files can be downloaded from Google Drive. Alternatively, you can load the object .obj files directly and sample the point clouds yourself.

  2. The directory should be as follows:

.data/             
├── mjcf/         
├── dexgrasp_train.h5   
└── dexgrasp_test.h5   

Usage

Train

  1. Train DGTR in Dynamic Match Training phase for 15 epochs.
CUDA_VISIBLE_DEVICES="0" python train.py --train_cfg config/dgtr.yaml
  1. Train DGTR in Static Match Warm-up Training phase for 5 epochs.
CUDA_VISIBLE_DEVICES="0" python train.py \
--train_cfg config/dgtr.yaml \
-r \
-c <checkpoint of epoch 15> \
--override assignments \"static\" data.train.assignment \"./Experiments/dgtr/assignment_epoch_15.json\"
  1. Train DGTR in Static Matching Penetration Training phase for 5 epochs.
CUDA_VISIBLE_DEVICES="0" python train.py \
--train_cfg config/dgtr.yaml \
-r \
-c <checkpoint of epoch 20> \
--override assignments \"static\" data.train.assignment \"./Experiments/dgtr/assignment_epoch_15.json\"

Inference

python ./test.py \
--train_cfg config/dgtr.yaml \
--test_cfg ./config/test_default.yaml \
--override model.checkpoint_path \"<checkpoint of epoch 25>\"

Evaluation

python ./tools/evaluate.py -r <the path of raw_results.json> --gpus <GPU_ID>

TODO

  • Release the code of evaluation in Issac Gym
  • Release the code of AB-TTA
  • Release the training code of DGTR
  • Release the inference code of DGTR

Acknowledgements

The code of this repository is based on the following repositories. We would like to thank the authors for sharing their works.

Contact

  • Email: {xugh23, weiylin5}@mail2.sysu.edu.cn

Citation

Please cite it if you find this work useful.

@inproceedings{xu2024dexterous,
 title = {Dexterous Grasp Transformer},
 author = {Xu, Guo-Hao and Wei, Yi-Lin and Zheng, Dian and Wu, Xiao-Ming and Zheng, Wei-Shi},
 booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
 year = {2024}
 }

About

Official Code for Dexterous Grasp Transformer (CVPR 2024)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%