- (2024/9) The paper got accepted at NeurIPS 2024.
- (2024/9) UAV3D V1.0-mini is released.
- (2024/6) Source code and pre-trained models are released.
- (2024/6) UAV3D V1.0 is released.
Please check Google Drive to download the dataset.
After downloading the data, please put the data in the following structure:
├── data
│ ├── UAV3D
│ │ ├── maps
│ │ ├── samples
│ │ ├── sweeps
│ │ ├── v1.0-test
| | ├── v1.0-trainval
│ │ ├── uav3d_infos_train.pkl
│ │ ├── uav3d_infos_val.pkl
│ │ ├── uav3d_infos_test.pkl
cd perception/PETR
Training:
tools/dist_train.sh projects/configs/petr/petr_r50dcn_gridmask_p4.py 4 --work-dir work_dirs/petr_r50dcn_gridmask_p4/
Evaluation:
tools/dist_test.sh projects/configs/petr/petr_r50dcn_gridmask_p4.py work_dirs/petr_r50dcn_gridmask_p4/latest.pth 8 --eval bbox
cd perception/bevfusion
Training:
torchpack dist-run -np 4 python tools/train.py configs/nuscenes/det/centerhead/lssfpn/camera/256x704/resnet/default.yaml --run-dir runs/resnet50
Evaluation:
torchpack dist-run -np 4 python tools/test.py configs/nuscenes/det/centerhead/lssfpn/camera/256x704/resnet/default.yaml runs/resnet50/epoch_24.pth --eval bbox
cd perception/detr3d
Training:
tools/dist_train.sh projects/configs/detr3d/detr3d_res50_gridmask.py 4 --work-dir work_dirs/detr3d_res50_gridmask/
Evaluation:
tools/dist_test.sh projects/configs/detr3d/detr3d_res50_gridmask.py work_dirs/detr3d_res50_gridmask/epoch_24.pth 4 --eval bbox
cd collaborative_perception/bevfusion
Training when2com(lowerbound / upperbound / v2vnet / when2com / who2com/ disonet):
torchpack dist-run -np 4 python tools/train.py configs/nuscenes/det/centerhead/lssfpn/camera/256x704/swint/when2com/default.yaml --model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth --run-dir runs/when2com
Evaluation of when2com(lowerbound / upperbound / v2vnet / when2com / who2com/ disonet):
torchpack dist-run -np 4 python tools/test.py configs/nuscenes/det/centerhead/lssfpn/camera/256x704/swint/when2com/default.yaml runs/when2com/epoch_24.pth --eval bbox
cd tracking/CenterPoint
Put the results_nusc.json
file in the CenterPoint/input
folder.
Evaluation:
python pub_test.py --work_dir /{dir}/UAV3D/tracking/CenterPoint/output --checkpoint /{dir}/UAV3D/tracking/CenterPoint/input/results_nusc.json
Model | Backbone | Size | mAP↑ | NDS↑ | mATE↓ | mASE↓ | mAOE↓ | Checkpoint | Log |
---|---|---|---|---|---|---|---|---|---|
PETR | Res-50 | 704×256 | 0.512 | 0.571 | 0.741 | 0.173 | 0.072 | link | link |
BEVFusion | Res-50 | 704×256 | 0.487 | 0.458 | 0.615 | 0.152 | 1.000 | link | link |
DETR3D | Res-50 | 704×256 | 0.430 | 0.509 | 0.791 | 0.187 | 0.100 | link | link |
PETR | Res-50 | 800×450 | 0.581 | 0.632 | 0.625 | 0.160 | 0.064 | link | link |
BEVFusion | Res-101 | 800×450 | 0.536 | 0.582 | 0.521 | 0.154 | 0.343 | link | link |
DETR3D | Res-101 | 800×450 | 0.618 | 0.671 | 0.494 | 0.158 | 0.070 | link | link |
Model | Backbone | Size | AMOTA↑ | AMOTP↓ | MOTA↑ | MOTP↓ | TID↓ | LGD↓ | det_result | Log |
---|---|---|---|---|---|---|---|---|---|---|
PETR | Res-50 | 704×256 | 0.199 | 1.294 | 0.195 | 0.794 | 1.280 | 2.970 | link | link |
BEVFusion | Res-50 | 704×256 | 0.566 | 1.137 | 0.501 | 0.695 | 0.790 | 1.600 | link | link |
DETR3D | Res-50 | 704×256 | 0.089 | 1.382 | 0.121 | 0.800 | 1.540 | 3.530 | link | link |
PETR | Res-50 | 800×450 | 0.291 | 1.156 | 0.256 | 0.677 | 1.090 | 2.550 | link | link |
BEVFusion | Res-101 | 800×450 | 0.606 | 1.006 | 0.540 | 0.627 | 0.700 | 1.390 | link | link |
DETR3D | Res-101 | 800×450 | 0.262 | 1.123 | 0.238 | 0.561 | 1.140 | 2.720 | link | link |
Model | mAP↑ | NDS↑ | mATE↓ | mASE↓ | mAOE↓ | AP@IoU=0.5↑ | AP@IoU=0.7↑ | Checkpoint | Log |
---|---|---|---|---|---|---|---|---|---|
Lower-bound | 0.544 | 0.556 | 0.540 | 0.147 | 0.578 | 0.457 | 0.140 | link | link |
When2com | 0.550 | 0.507 | 0.534 | 0.156 | 0.679 | 0.461 | 0.166 | link | link |
Who2com | 0.546 | 0.597 | 0.541 | 0.150 | 0.263 | 0.453 | 0.141 | link | link |
V2VNet | 0.647 | 0.628 | 0.508 | 0.167 | 0.533 | 0.545 | 0.141 | link | link |
DiscoNet | 0.700 | 0.689 | 0.423 | 0.143 | 0.422 | 0.649 | 0.247 | link | link |
Upper-bound | 0.720 | 0.748 | 0.391 | 0.106 | 0.117 | 0.673 | 0.316 | link | link |
Model | AMOTA↑ | AMOTP↓ | MOTA↑ | MOTP↓ | TID↓ | LGD↓ | det_result | Log |
---|---|---|---|---|---|---|---|---|
Lower-bound | 0.644 | 1.018 | 0.593 | 0.611 | 0.620 | 1.280 | link | link |
When2com | 0.646 | 1.012 | 0.595 | 0.618 | 0.590 | 1.200 | link | link |
Who2com | 0.648 | 1.012 | 0.602 | 0.623 | 0.580 | 1.200 | link | link |
V2VNet | 0.782 | 0.803 | 0.735 | 0.587 | 0.360 | 0.710 | link | link |
DiscoNet | 0.809 | 0.703 | 0.766 | 0.516 | 0.300 | 0.590 | link | link |
Upper-bound | 0.812 | 0.672 | 0.781 | 0.476 | 0.300 | 0.570 | link | link |
If you find this repository useful, please consider giving a star ⭐ and citation 📘:
@inproceedings{uav3d2024,
title={UAV3D: A Large-scale 3D Perception Benchmark for Unmanned Aerial Vehicles},
author={Hui Ye and Raj Sunderraman and Shihao Ji},
booktitle={The 38th Conference on Neural Information Processing Systems (NeurIPS)},
year={2024}
}
In collecting UAV3D, we received valuable help and suggestions from the authors of CoPerception-UAV and Where2comm.
For 3D object detection task, our implementation is based on PETR, BEVFusion, and DETR3D.
For Collaborative 3D object detection task, our implementation is based on BEVFusion and CoPerception.
For object tracking task, our implementation is based on CenterPoint.
The software and data were created by Georgia State University Research Foundation under Army Research Laboratory (ARL) Award Numbers W911NF-22-2-0025 and W911NF-23-2-0224. ARL, as the Federal awarding agency, reserves a royalty-free, nonexclusive and irrevocable right to reproduce, publish, or otherwise use this software for Federal purposes, and to authorize others to do so in accordance with 2 CFR 200.315(b).