Skip to content
forked from NVIDIA/TensorRT

TensorRT is a C++ library that facilitates high performance inference on NVIDIA GPUs and deep learning accelerators.

License

Notifications You must be signed in to change notification settings

wtsitp/TensorRT

 
 

Repository files navigation

License Documentation

TensorRT Open Source Software

This repository contains the Open Source Software (OSS) components of NVIDIA TensorRT. Included are the sources for TensorRT plugins and parsers (Caffe and ONNX), as well as sample applications demonstrating usage and capabilities of the TensorRT platform.

Prerequisites

To build the TensorRT OSS components, ensure you meet the following package requirements:

System Packages

Optional Packages

TensorRT Release

NOTE: Along with the TensorRT OSS components, the following source packages will also be downloaded, and they are not required to be installed on the system.

Downloading The TensorRT Components

  1. Download TensorRT OSS sources.

    git clone -b release/5.1 https://github.com/nvidia/TensorRT TensorRT
    cd TensorRT
    git submodule update --init --recursive
    export TRT_SOURCE=`pwd`
  2. Download the TensorRT binary release.

    To build the TensorRT OSS, obtain the corresponding TensorRT 5.1.5 binary release from NVidia Developer Zone. For a list of key features, known and fixed issues, see the TensorRT 5.1.5 Release Notes.

    Example: Ubuntu 18.04 with cuda-10.1

    Download and extract the TensorRT 5.1.5.0 GA for Ubuntu 18.04 and CUDA 10.1 tar package

    cd ~/Downloads
    # Download TensorRT-5.1.5.0.Ubuntu-18.04.2.x86_64-gnu.cuda-10.1.cudnn7.5.tar.gz
    tar -xvzf TensorRT-5.1.5.0.Ubuntu-18.04.2.x86_64-gnu.cuda-10.1.cudnn7.5.tar.gz
    export TRT_RELEASE=`pwd`/TensorRT-5.1.5.0

    Example: CentOS/RedHat 7 with cuda-9.0

    Download and extract the TensorRT 5.1.5.0 GA for CentOS/RedHat 7 and CUDA 9.0 tar package

    cd ~/Downloads
    # Download TensorRT-5.1.5.0.Red-Hat.x86_64-gnu.cuda-9.0.cudnn7.5.tar.gz
    tar -xvzf TensorRT-5.1.5.0.Red-Hat.x86_64-gnu.cuda-9.0.cudnn7.5.tar.gz
    export TRT_RELEASE=~/Downloads/TensorRT-5.1.5.0

Setting Up The Build Environment

  • Install the System Packages list of components in the Prerequisites section.

  • Alternatively, use the build containers as described below:

  1. Generate the TensorRT build container.

    The docker container can be built using the included Dockerfile. The build container is configured with the environment and packages required for building TensorRT OSS.

    Example: Ubuntu 18.04 with cuda-10.1

    docker build -f docker/ubuntu-18.04.Dockerfile --build-arg CUDA_VERSION=10.1 --tag=tensorrt .

    Example: CentOS/RedHat 7 with cuda-9.0

    docker build -f docker/centos-7.Dockerfile --build-arg CUDA_VERSION=9.0 --tag=tensorrt .
  2. Launch the TensorRT build container.

    docker run -v $TRT_RELEASE:/tensorrt -v $TRT_SOURCE:/workspace/TensorRT -it tensorrt:latest

    NOTE: To run TensorRT/CUDA programs within the build container, install nvidia-docker. Replace the docker run command with nvidia-docker run or docker run --runtime=nvidia.

Building The TensorRT OSS Components

  • Generate Makefiles and build.

     cd $TRT_SOURCE
     mkdir -p build && cd build 
     cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_BIN_DIR=`pwd`/out
     make -j$(nproc)

    NOTE:

    1. The default CUDA version used by CMake is 10.1. To override this, for example to 9.0, append -DCUDA_VERSION=9.0 to the cmake command.
    2. If linking against the plugin and parser libraries obtained from TensorRT release (default behavior) is causing compatibility issues with TensorRT OSS, try building the OSS components separately in the following dependency order:
    # 1. Build Plugins
    cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_BIN_DIR=`pwd`/out \
             -DBUILD_PLUGINS=ON -DBUILD_PARSERS=OFF -DBUILD_SAMPLES=OFF
    make -j$(nproc)
    # 2. Build Parsers
    cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_BIN_DIR=`pwd`/out \
             -DBUILD_PLUGINS=OFF -DBUILD_PARSERS=ON -DBUILD_SAMPLES=OFF
    make -j$(nproc)
    # 3. Build Samples
    cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_BIN_DIR=`pwd`/out \
             -DBUILD_PLUGINS=OFF -DBUILD_PARSERS=OFF -DBUILD_SAMPLES=ON
    make -j$(nproc)

    The required CMake arguments are:

    • TRT_LIB_DIR: Path to the TensorRT installation directory containing libraries.

    • TRT_BIN_DIR: Output directory where generated build artifacts will be copied.

    The following CMake build parameters are optional:

    • CMAKE_BUILD_TYPE: Specify if binaries generated are for release or debug (contain debug symbols). Values consists of [Release] | Debug

    • CUDA_VERISON: The version of CUDA to target, for example [10.1].

    • CUDNN_VERSION: The version of cuDNN to target, for example [7.5].

    • PROTOBUF_VERSION: The version of Protobuf to use, for example [3.8.x]. Note: Changing this will not configure CMake to use a system version of Protobuf, it will configure CMake to download and try building that version.

    • CMAKE_TOOLCHAIN_FILE: The path to a toolchain file for cross compilation.

    • BUILD_PARSERS: Specify if the parsers should be built, for example [ON] | OFF. If turned OFF, CMake will try to find precompiled versions of the parser libraries to use in compiling samples. First in ${TRT_LIB_DIR}, then on the system. If the build type is Debug, then it will prefer debug builds of the libraries before release versions if available.

    • BUILD_PLUGINS: Specify if the plugins should be built, for example [ON] | OFF. If turned OFF, CMake will try to find a precompiled version of the plugin library to use in compiling samples. First in ${TRT_LIB_DIR}, then on the system. If the build type is Debug, then it will prefer debug builds of the libraries before release versions if available.

    • BUILD_SAMPLES: Specify if the samples should be built, for example [ON] | OFF.

    Other build options with limited applicability:

    • NVPARTNER: For use by NVIDIA partners with exclusive source access. Values consists of [OFF] | ON.

    • CUB_VERSION: The version of CUB to use, for example [1.8.0].

    • GPU_ARCHS: GPU (SM) architectures to target. By default we generate CUDA code for the latest SM version. If lower SM versions are desired, they can be specified here as a comma separated list. Table of compute capabilities of NVIDIA GPUs can be found here. Examples:

      • Titan V: -DGPU_ARCHS="70"
      • Tesla V100: -DGPU_ARCHS="70"
      • GeForce RTX 2080: -DGPU_ARCHS="75"
      • Tesla T4: -DGPU_ARCHS="75"

Install the TensorRT OSS Components [Optional]

  • Copy the build artifacts into the TensorRT installation directory, updating the installation.
    • TensorRT installation directory is determined as $TRT_LIB_DIR/..

    • Installation might require superuser privileges depending on the path and permissions of files being replaced.

      sudo make install

Useful Resources

TensorRT

Known Issues

TensorRT 5.1.5

  • FP16/INT8 modes have been disabled in SampleSSD (Caffe version). Please see the SampleSSD README for details.
  • Additionally, see the TensorRT Release Notes.

About

TensorRT is a C++ library that facilitates high performance inference on NVIDIA GPUs and deep learning accelerators.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 77.1%
  • Cuda 19.4%
  • CMake 3.0%
  • Other 0.5%