Official implementation of Point Cloud Super Resolution with Adversarial Residual Graph Networks.
@inproceedings{wu2019point,
title = {Point Cloud Super Resolution with Adversarial Residual Graph Networks},
author = {Wu, Huikai and Zhang, Junge and Huang, Kaiqi},
booktitle = {arXiv preprint arXiv:1908.02111},
year = {2019}
}
Contact: Hui-Kai Wu ([email protected])
The code is tested with TF1.5
(higher version should also work) and Python 3.5
on Ubuntu 16.04
-
Clone the repository:
git clone https://github.com/wuhuikai/PointCloudSuperResolution cd PointCloudSuperResolution
-
Install Requirements
pip install -r requirements.txt
-
Compile the TF operators
cd code/tf_ops/CD && CUDA_HOME=[CUDA_HOME] bash tf_nndistance_compile.sh cd code/tf_ops/grouping && CUDA_HOME=[CUDA_HOME] bash tf_grouping_compile.sh cd code/tf_ops/sampling && CUDA_HOME=[CUDA_HOME] bash tf_sampling_compile.sh
-
Download the training patches in HDF5 format from GoogleDrive and put it in folder
data
. -
Train [Optional]
cd code python main_gan.py --phase train --dataset ../data/Patches_noHole_and_collected.h5 python main_gan.py --phase train --dataset ../data/Patches_noHole_and_collected.h5 --gan --log_dir ../model/model_res_mesh_pool_gan_ft --batch_size 16 --model_path ../model/model_res_mesh_pool/model-80 --max_epoch 40
-
Predict
python main_gan.py --dataset ../data/test_data/our_collected_data/input --log_dir ../model/model_res_mesh_pool_gan_ft
-
Evluation
cd evaluation_code conda install cgal mkdir build && cd build && cmake .. && make && mv evaluation ../ && cd .. && rm -rf build python evaluation_cd.py --pre_path ../model/model_res_mesh_pool_gan_ft/result/input --gt_path ../data/test_data/our_collected_data/gt python evaluation.py --pre_path ../model/model_res_mesh_pool_gan_ft/result/input --gt_path ../data/test_data/our_collected_data/gt_off --save_path ../model/model_res_mesh_pool_gan_ft/result/input_nuc
The code is modified from PointNet++ and PU-Net.