This repository repository is providing a Gradio GUI for kohya's Stable Diffusion trainers found here: https://github.com/kohya-ss/sd-scripts. The GUI allow you to set the training parameters and generate and run the required CLI command to train the model.
Python 3.10.6+ and Git:
- Python 3.10.6+: https://www.python.org/ftp/python/3.10.6/python-3.10.6-amd64.exe
- git: https://git-scm.com/download/win
Give unrestricted script access to powershell so venv can work:
- Open an administrator powershell window
- Type
Set-ExecutionPolicy Unrestricted
and answer A - Close admin powershell window
Open a regular user Powershell terminal and type the following inside:
git clone https://github.com/bmaltais/kohya_ss.git
cd kohya_ss
python -m venv --system-site-packages venv
.\venv\Scripts\activate
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
pip install --upgrade -r requirements.txt
pip install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl
cp .\bitsandbytes_windows\*.dll .\venv\Lib\site-packages\bitsandbytes\
cp .\bitsandbytes_windows\cextension.py .\venv\Lib\site-packages\bitsandbytes\cextension.py
cp .\bitsandbytes_windows\main.py .\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py
accelerate config
This step is optional but can improve the learning speed for NVidia 4090 owners...
Due to the filesize I can't host the DLLs needed for CUDNN 8.6 on Github, I strongly advise you download them for a speed boost in sample generation (almost 50% on 4090) you can download them from here: https://b1.thefileditch.ch/mwxKTEtelILoIbMbruuM.zip
To install simply unzip the directory and place the cudnn_windows folder in the root of the kohya_diffusers_fine_tuning repo.
Run the following command to install:
.\venv\Scripts\activate
python .\tools\cudann_1.8_install.py
When a new release comes out you can upgrade your repo with the following command:
cd kohya_ss
git pull
.\venv\Scripts\activate
pip install --upgrade -r requirements.txt
Once the commands have completed successfully you should be ready to use the new version.
To run the GUI you simply use this command:
.\gui.ps1
or you can alsi do:
.\venv\Scripts\activate
python.exe .\kohya_gui.py
You can find the dreambooth solution spercific Dreambooth README
You can find the finetune solution spercific Finetune README
You can find the train network solution spercific Train network README
Training a LoRA currently use the train_network.py
python code. You can create LoRA network by using the all-in-one gui.cmd
or by running the dedicated LoRA training GUI with:
.\venv\Scripts\activate
python lora_gui.py
Once you have created the LoRA network you can generate images via auto1111 by installing the extension found here: https://github.com/kohya-ss/sd-webui-additional-networks
-
2023/01/16 (v20.2.1):
- Merging latest code update from kohya
- Added
--max_train_epochs
and--max_data_loader_n_workers
option for each training script. - If you specify the number of training epochs with
--max_train_epochs
, the number of steps is calculated from the number of epochs automatically. - You can set the number of workers for DataLoader with
--max_data_loader_n_workers
, default is 8. The lower number may reduce the main memory usage and the time between epochs, but may cause slower dataloading (training). - Fix loading some VAE or .safetensors as VAE is failed for
--vae
option. Thanks to Fannovel16! - Add negative prompt scaling for
gen_img_diffusers.py
You can set another conditioning scale to the negative prompt with--negative_scale
option, and--nl
option for the prompt. Thanks to laksjdjf! - Refactoring of GUI code and fixing mismatch... and possibly introducing bugs...
-
2023/01/11 (v20.2.0):
- Add support for max token lenght
-
2023/01/10 (v20.1.1):
- Fix issue with LoRA config loading
-
2023/01/10 (v20.1):
- Add support for
--output_name
to trainers - Refactor code for easier maintenance
- Add support for
-
2023/01/10 (v20.0):
- Update code base to match latest kohys_ss code upgrade in https://github.com/kohya-ss/sd-scripts
-
2023/01/09 (v19.4.3):
- Add vae support to dreambooth GUI
- Add gradient_checkpointing, gradient_accumulation_steps, mem_eff_attn, shuffle_caption to finetune GUI
- Add gradient_accumulation_steps, mem_eff_attn to dreambooth lora gui
-
2023/01/08 (v19.4.2):
- Add find/replace option to Basic Caption utility
- Add resume training and save_state option to finetune UI
-
2023/01/06 (v19.4.1):
- Emergency fix for new version of gradio causing issues with drop down menus. Please run
pip install -U -r requirements.txt
to fix the issue after pulling this repo.
- Emergency fix for new version of gradio causing issues with drop down menus. Please run
-
2023/01/06 (v19.4):
- Add new Utility to Extract a LoRA from a finetuned model
-
2023/01/06 (v19.3.1):
- Emergency fix for dreambooth_ui no longer working, sorry
- Add LoRA network merge too GUI. Run
pip install -U -r requirements.txt
after pulling this new release.
-
2023/01/05 (v19.3):
- Add support for
--clip_skip
option - Add missing
detect_face_rotate.py
to tools folder - Add
gui.cmd
for easy start of GUI
- Add support for
-
2023/01/02 (v19.2) update:
- Finetune, add xformers, 8bit adam, min bucket, max bucket, batch size and flip augmentation support for dataset preparation
- Finetune, add "Dataset preparation" tab to group task specific options
-
2023/01/01 (v19.2) update:
- add support for color and flip augmentation to "Dreambooth LoRA"
-
2023/01/01 (v19.1) update:
- merge kohys_ss upstream code updates
- rework Dreambooth LoRA GUI
- fix bug where LoRA network weights were not loaded to properly resume training
-
2022/12/30 (v19) update:
- support for LoRA network training in kohya_gui.py.
-
2022/12/23 (v18.8) update:
- Fix for conversion tool issue when the source was an sd1.x diffuser model
- Other minor code and GUI fix
-
2022/12/22 (v18.7) update:
- Merge dreambooth and finetune is a common GUI
- General bug fixes and code improvements
-
2022/12/21 (v18.6.1) update:
- fix issue with dataset balancing when the number of detected images in the folder is 0
-
2022/12/21 (v18.6) update:
- add optional GUI authentication support via:
python fine_tune.py --username=<name> --password=<password>
- add optional GUI authentication support via: