Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
bubbliiiing authored Jun 6, 2020
1 parent d41adb5 commit 20975fa
Showing 1 changed file with 141 additions and 0 deletions.
141 changes: 141 additions & 0 deletions utils/dataloader.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
from random import shuffle
import numpy as np
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
from PIL import Image
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
from nets.yolo_training import Generator


class YoloDataset(Dataset):
def __init__(self, train_lines, image_size, mosaic=True):
super(YoloDataset, self).__init__()

self.train_lines = train_lines
self.train_batches = len(train_lines)
self.image_size = image_size
self.mosaic = mosaic
self.flag = True

def __len__(self):
return self.train_batches

def rand(self, a=0, b=1):
return np.random.rand() * (b - a) + a

def get_random_data(self, annotation_line, input_shape, jitter=.3, hue=.1, sat=1.5, val=1.5):
"""实时数据增强的随机预处理"""
line = annotation_line.split()
image = Image.open(line[0])
iw, ih = image.size
h, w = input_shape
box = np.array([np.array(list(map(int, box.split(',')))) for box in line[1:]])

# 调整图片大小
new_ar = w / h * self.rand(1 - jitter, 1 + jitter) / self.rand(1 - jitter, 1 + jitter)
scale = self.rand(.25, 2)
if new_ar < 1:
nh = int(scale * h)
nw = int(nh * new_ar)
else:
nw = int(scale * w)
nh = int(nw / new_ar)
image = image.resize((nw, nh), Image.BICUBIC)

# 放置图片
dx = int(self.rand(0, w - nw))
dy = int(self.rand(0, h - nh))
new_image = Image.new('RGB', (w, h),
(np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255)))
new_image.paste(image, (dx, dy))
image = new_image

# 是否翻转图片
flip = self.rand() < .5
if flip:
image = image.transpose(Image.FLIP_LEFT_RIGHT)

# 色域变换
hue = self.rand(-hue, hue)
sat = self.rand(1, sat) if self.rand() < .5 else 1 / self.rand(1, sat)
val = self.rand(1, val) if self.rand() < .5 else 1 / self.rand(1, val)
x = rgb_to_hsv(np.array(image) / 255.)
x[..., 0] += hue
x[..., 0][x[..., 0] > 1] -= 1
x[..., 0][x[..., 0] < 0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x > 1] = 1
x[x < 0] = 0
image_data = hsv_to_rgb(x) * 255 # numpy array, 0 to 1

# 调整目标框坐标
box_data = np.zeros((len(box), 5))
if len(box) > 0:
np.random.shuffle(box)
box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
if flip:
box[:, [0, 2]] = w - box[:, [2, 0]]
box[:, 0:2][box[:, 0:2] < 0] = 0
box[:, 2][box[:, 2] > w] = w
box[:, 3][box[:, 3] > h] = h
box_w = box[:, 2] - box[:, 0]
box_h = box[:, 3] - box[:, 1]
box = box[np.logical_and(box_w > 1, box_h > 1)] # 保留有效框
box_data = np.zeros((len(box), 5))
box_data[:len(box)] = box
if len(box) == 0:
return image_data, []

if (box_data[:, :4] > 0).any():
return image_data, box_data
else:
return image_data, []

def __getitem__(self, index):
if index == 0:
shuffle(self.train_lines)
lines = self.train_lines
n = self.train_batches
index = index % n
img, y = self.get_random_data(lines[index], self.image_size[0:2])
if len(y) != 0:
# 从坐标转换成0~1的百分比
boxes = np.array(y[:, :4], dtype=np.float32)
boxes[:, 0] = boxes[:, 0] / self.image_size[1]
boxes[:, 1] = boxes[:, 1] / self.image_size[0]
boxes[:, 2] = boxes[:, 2] / self.image_size[1]
boxes[:, 3] = boxes[:, 3] / self.image_size[0]

boxes = np.maximum(np.minimum(boxes, 1), 0)
boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
boxes[:, 3] = boxes[:, 3] - boxes[:, 1]

boxes[:, 0] = boxes[:, 0] + boxes[:, 2] / 2
boxes[:, 1] = boxes[:, 1] + boxes[:, 3] / 2
y = np.concatenate([boxes, y[:, -1:]], axis=-1)

img = np.array(img, dtype=np.float32)

tmp_inp = np.transpose(img / 255.0, (2, 0, 1))
tmp_targets = np.array(y, dtype=np.float32)
return tmp_inp, tmp_targets


# DataLoader中collate_fn使用
def yolo_dataset_collate(batch):
images = []
bboxes = []
for img, box in batch:
images.append(img)
bboxes.append(box)
images = np.array(images)
bboxes = np.array(bboxes)
return images, bboxes

0 comments on commit 20975fa

Please sign in to comment.