Skip to content

🚘 Easiest Fully Convolutional Networks

Notifications You must be signed in to change notification settings

wz131486/FCN-pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Open Source Love

🚘 The easiest implementation of fully convolutional networks

Results

Trials

Training Procedures

Performance

I train with two popular benchmark dataset: CamVid and Cityscapes

dataset n_class pixel accuracy
Cityscapes 20 96%
CamVid 32 93%

Training

Environment

# Install python3
conda create -n fcn python=3.9

# To activate this environment
conda activate fcn

# Install dep
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

and download pytorch 0.2.0 from pytorch.org

and download CamVid dataset (recommended) or Cityscapes dataset

CamVid 下载

https://tianchi.aliyun.com/dataset/128347?t=1720103543115

Cityscapes 下载

https://tianchi.aliyun.com/dataset/91542?spm=a2c22.28136470.0.0.448e4a0azc0Kkg&from=search-list

Run the code

  • default dataset is CamVid

create a directory named "CamVid", and put data into it, then run python codes:

python3 python/CamVid_utils.py 
python3 python/train.py CamVid
  • or train with CityScapes

create a directory named "CityScapes", and put data into it, then run python codes:

python3 python/CityScapes_utils.py 
python3 python/train.py CityScapes

Author

Po-Chih Huang / @pochih

About

🚘 Easiest Fully Convolutional Networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.7%
  • Shell 0.3%