Skip to content

Commit

Permalink
auto commit
Browse files Browse the repository at this point in the history
  • Loading branch information
CyC2018 committed Oct 3, 2018
1 parent a1debab commit 74d4af6
Showing 1 changed file with 18 additions and 18 deletions.
36 changes: 18 additions & 18 deletions notes/Leetcode 题解.md
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ Output: True
Explanation: 1 * 1 + 2 * 2 = 5
```

题目描述:判断一个数是否为两个数的平方和,例如 5 = 1<sup>2</sup> + 2<sup>2</sup>
题目描述:判断一个数是否为两个数的平方和。

```java
public boolean judgeSquareSum(int c) {
Expand All @@ -130,7 +130,7 @@ public boolean judgeSquareSum(int c) {
Given s = "leetcode", return "leotcede".
```

使用双指针,指向待反转的两个元音字符,一个指针从头向尾遍历,一个指针从尾到头遍历。
使用双指针指向待反转的两个元音字符,一个指针从头向尾遍历,一个指针从尾到头遍历。

```java
private final static HashSet<Character> vowels = new HashSet<>(Arrays.asList('a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U'));
Expand Down Expand Up @@ -307,6 +307,8 @@ private boolean isValid(String s, String target) {

[215. Kth Largest Element in an Array (Medium)](https://leetcode.com/problems/kth-largest-element-in-an-array/description/)

题目描述:找到第 k 大的元素。

**排序** :时间复杂度 O(NlogN),空间复杂度 O(1)

```java
Expand All @@ -323,7 +325,7 @@ public int findKthLargest(int[] nums, int k) {
PriorityQueue<Integer> pq = new PriorityQueue<>(); // 小顶堆
for (int val : nums) {
pq.add(val);
if (pq.size() > k) // 维护堆的大小为 K
if (pq.size() > k) // 维护堆的大小为 K
pq.poll();
}
return pq.peek();
Expand Down Expand Up @@ -555,7 +557,7 @@ Explanation: You don't need to remove any of the intervals since they're already

题目描述:计算让一组区间不重叠所需要移除的区间个数。

计算最多能组成的不重叠区间个数,然后用区间总个数减去不重叠区间的个数。
先计算最多能组成的不重叠区间个数,然后用区间总个数减去不重叠区间的个数。

在每次选择中,区间的结尾最为重要,选择的区间结尾越小,留给后面的区间的空间越大,那么后面能够选择的区间个数也就越大。

Expand Down Expand Up @@ -639,7 +641,7 @@ Output:

题目描述:一个学生用两个分量 (h, k) 描述,h 表示身高,k 表示排在前面的有 k 个学生的身高比他高或者和他一样高。

为了在每次插入操作时不影响后续的操作,身高较高的学生应该先做插入操作,否则身高较小的学生原先正确插入第 k 个位置可能会变成第 k+1 个位置。
为了使插入操作不影响后续的操作,身高较高的学生应该先做插入操作,否则身高较小的学生原先正确插入的第 k 个位置可能会变成第 k+1 个位置。

身高降序、k 值升序,然后按排好序的顺序插入队列的第 k 个位置中。

Expand Down Expand Up @@ -825,7 +827,7 @@ public int binarySearch(int[] nums, int key) {

**时间复杂度**

二分查找也称为折半查找,每次都能将查找区间减半,这种折半特性的算法时间复杂度都为 O(logN)。
二分查找也称为折半查找,每次都能将查找区间减半,这种折半特性的算法时间复杂度为 O(logN)。

**m 计算**

Expand Down Expand Up @@ -961,7 +963,7 @@ public char nextGreatestLetter(char[] letters, char target) {
[540. Single Element in a Sorted Array (Medium)](https://leetcode.com/problems/single-element-in-a-sorted-array/description/)

```html
Input: [1,1,2,3,3,4,4,8,8]
Input: [1, 1, 2, 3, 3, 4, 4, 8, 8]
Output: 2
```

Expand Down Expand Up @@ -1132,11 +1134,11 @@ public List<Integer> diffWaysToCompute(String input) {

<div align="center"> <img src="../pics//4ff355cf-9a7f-4468-af43-e5b02038facc.jpg"/> </div><br>

广度优先搜索的搜索过程有点像一层一层地进行遍历,每层遍历都以上一层遍历的结果作为起点,遍历一个距离能访问到的所有节点。需要注意的是,遍历过的节点不能再次被遍历。
广度优先搜索一层一层地进行遍历,每层遍历都以上一层遍历的结果作为起点,遍历一个距离能访问到的所有节点。需要注意的是,遍历过的节点不能再次被遍历。

第一层:

- 0 -> {6,2,1,5};
- 0 -> {6,2,1,5}

第二层:

Expand All @@ -1150,7 +1152,7 @@ public List<Integer> diffWaysToCompute(String input) {
- 4 -> {}
- 3 -> {}

可以看到,每一层遍历的节点都与根节点距离相同。设 d<sub>i</sub> 表示第 i 个节点与根节点的距离,推导出一个结论:对于先遍历的节点 i 与后遍历的节点 j,有 d<sub>i</sub><=d<sub>j</sub>。利用这个结论,可以求解最短路径等 **最优解** 问题:第一次遍历到目的节点,其所经过的路径为最短路径。应该注意的是,使用 BFS 只能求解无权图的最短路径。
每一层遍历的节点都与根节点距离相同。设 d<sub>i</sub> 表示第 i 个节点与根节点的距离,推导出一个结论:对于先遍历的节点 i 与后遍历的节点 j,有 d<sub>i</sub> <= d<sub>j</sub>。利用这个结论,可以求解最短路径等 **最优解** 问题:第一次遍历到目的节点,其所经过的路径为最短路径。应该注意的是,使用 BFS 只能求解无权图的最短路径。

在程序实现 BFS 时需要考虑以下问题:

Expand Down Expand Up @@ -1180,19 +1182,17 @@ public int minPathLength(int[][] grids, int tr, int tc) {
pathLength++;
while (size-- > 0) {
Pair<Integer, Integer> cur = queue.poll();
int cr = cur.getKey(), cc = cur.getValue();
grids[cr][cc] = 0; // 标记
for (int[] d : direction) {
int nr = cur.getKey() + d[0], nc = cur.getValue() + d[1];
Pair<Integer, Integer> next = new Pair<>(nr, nc);
if (next.getKey() < 0 || next.getValue() >= m
|| next.getKey() < 0 || next.getValue() >= n) {

int nr = cr + d[0], nc = cc + d[1];
if (nr < 0 || nr >= m || nc < 0 || nc >= n || grids[nr][nc] == 0) {
continue;
}
grids[next.getKey()][next.getValue()] = 0; // 标记
if (next.getKey() == tr && next.getValue() == tc) {
if (nr == tr && nc == tc) {
return pathLength;
}
queue.add(next);
queue.add(new Pair<>(nr, nc));
}
}
}
Expand Down

0 comments on commit 74d4af6

Please sign in to comment.