Skip to content

Commit

Permalink
数学公式更新
Browse files Browse the repository at this point in the history
  • Loading branch information
fengdu78 committed May 8, 2018
1 parent f7873ad commit 47c5989
Show file tree
Hide file tree
Showing 2 changed files with 39 additions and 33 deletions.
39 changes: 19 additions & 20 deletions html/math.html

Large diffs are not rendered by default.

33 changes: 20 additions & 13 deletions markdown/math.md
Original file line number Diff line number Diff line change
Expand Up @@ -592,12 +592,11 @@ $\Leftrightarrow$存在正交矩阵$Q$,使$Q^{T}{AQ} = Q^{- 1}{AQ} =\begin{pma
(6) 互斥事件(互不相容):$A\bigcap B$=$\varnothing$。

(7) 互逆事件(对立事件):
$A\bigcap B=\varnothing ,A\bigcup B=\Omega ,A=\bar{B}B=\bar{A}$
$A\bigcap B=\varnothing ,A\bigcup B=\Omega ,A=\bar{B},B=\bar{A}$
**2.运算律**
(1) 交换律:$A\bigcup B=B\bigcup A,A\bigcap B=B\bigcap A$
(2) 结合律:$A\bigcup B\bigcup C=A\bigcup B\bigcup C$;
$A\bigcap B\bigcap C=A\bigcap B\bigcap C$
(3) 分配律:$A\bigcup B\bigcap C=A\bigcap C\bigcup B\bigcap C$
(2) 结合律:$(A\bigcup B)\bigcup C=A\bigcup (B\bigcup C)$
(3) 分配律:$(A\bigcap B)\bigcap C=A\bigcap (B\bigcap C)$
**3.德$\centerdot $摩根律**

$\overline{A\bigcup B}=\bar{A}\bigcap \bar{B}$ $\overline{A\bigcap B}=\bar{A}\bigcup \bar{B}$
Expand All @@ -607,9 +606,9 @@ ${{A}_{1}}{{A}_{2}}\cdots {{A}_{n}}$两两互斥,且和事件为必然事件

**5.概率的基本公式**
(1)条件概率:
$PB|A=\frac{PAB}{PA}AB$
$P(B|A)=\frac{P(AB)}{P(A)}$,表示$A$发生的条件下,$B$发生的概率。
(2)全概率公式:
$PA=\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}}),{{B}_{i}}{{B}_{j}}}=\varnothing ,i\ne j,\underset{i=1}{\overset{n}{\mathop{\bigcup }}}\,{{B}_{i}}=\Omega $
$P(A)=\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}}),{{B}_{i}}{{B}_{j}}}=\varnothing ,i\ne j,\underset{i=1}{\overset{n}{\mathop{\bigcup }}}\,{{B}_{i}}=\Omega $
(3) Bayes公式:

$P({{B}_{j}}|A)=\frac{P(A|{{B}_{j}})P({{B}_{j}})}{\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}})}},j=1,2,\cdots ,n$
Expand All @@ -624,7 +623,7 @@ $P({{A}_{1}}{{A}_{2}}\cdots {{A}_{n}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})P({{A}_
$\Leftrightarrow P(AB)=P(A)P(B)$;$P(BC)=P(B)P(C)$ ;$P(AC)=P(A)P(C)$;
(3)$A$,$B$,$C$相互独立
$\Leftrightarrow P(AB)=P(A)P(B)$; $P(BC)=P(B)P(C)$ ;
$P(AC)=P(A)P(C);$ $P(ABC)=P(A)P(B)P(C)$
$P(AC)=P(A)P(C)$ ; $P(ABC)=P(A)P(B)P(C)$

**7.独立重复试验**

Expand Down Expand Up @@ -663,15 +662,23 @@ $A$与$B$互逆$\Rightarrow$ $A$与$B$互斥,但反之不成立,$A$与$B$互

(2) $F(x)$单调不减

(3) 右连续$F(x + 0) = F(x)$ (4)$F( - \infty) = 0,F( + \infty) = 1$
(3) 右连续$F(x + 0) = F(x)$

(4) $F( - \infty) = 0,F( + \infty) = 1$

**3.离散型随机变量的概率分布**

$P(X = x_{i}) = p_{i},i = 1,2,\cdots,n,\cdots\quad\quad p_{i} \geq 0,\sum_{i =1}^{\infty}p_{i} = 1$

**4.连续型随机变量的概率密度**

概率密度$f(x)$;非负可积,且:(1)$f(x) \geq 0,$ (2)$\int_{- \infty}^{+\infty}{f(x){dx} = 1}$ (3)$x$为$f(x)$的连续点,则:
概率密度$f(x)$;非负可积,且:

(1)$f(x) \geq 0,$

(2)$\int_{- \infty}^{+\infty}{f(x){dx} = 1}$

(3)$x$为$f(x)$的连续点,则:

$f(x) = F'(x)$分布函数$F(x) = \int_{- \infty}^{x}{f(t){dt}}$

Expand Down Expand Up @@ -750,7 +757,7 @@ $P\{ Y = y_{j}|X = x_{i}\} = \frac{p_{{ij}}}{p_{i \cdot}}$

(1) 二维均匀分布:$(x,y) \sim U(D)$ ,$f(x,y) = \begin{cases} \frac{1}{S(D)},(x,y) \in D \\ 0,其他 \end{cases}$

(2) 二维正态分布:($X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)$$X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)$
(2) 二维正态分布:$(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)$,$(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)$

$f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1 - \rho^{2}}}.\exp\left\{ \frac{- 1}{2(1 - \rho^{2})}\lbrack\frac{{(x - \mu_{1})}^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x - \mu_{1})(y - \mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{{(y - \mu_{2})}^{2}}{\sigma_{2}^{2}}\rbrack \right\}$

Expand Down Expand Up @@ -793,7 +800,7 @@ $f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}$

3) $C_{1}X + C_{2}Y\sim N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} + C_{2}^{2}\sigma_{2}^{2} + 2C_{1}C_{2}\sigma_{1}\sigma_{2}\rho)$

4) ${\ X}$关于Y=y的条件分布为: $N(\mu_{1} + \rho\frac{\sigma_{1}}{\sigma_{2}}(y - \mu_{2}),\sigma_{1}^{2}(1 - \rho^{2}))$
4) ${\ X}$关于$Y=y$的条件分布为: $N(\mu_{1} + \rho\frac{\sigma_{1}}{\sigma_{2}}(y - \mu_{2}),\sigma_{1}^{2}(1 - \rho^{2}))$

5) $Y$关于$X = x$的条件分布为: $N(\mu_{2} + \rho\frac{\sigma_{2}}{\sigma_{1}}(x - \mu_{1}),\sigma_{2}^{2}(1 - \rho^{2}))$

Expand All @@ -818,7 +825,7 @@ $C_{1}X + C_{2}Y\tilde{\ }N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2}

(2) $E(C_{1}X + C_{2}Y) = C_{1}E(X) + C_{2}E(Y)$

(3) 若X和Y独立,则$E(XY) = E(X)E(Y)$
(3) 若$X$和$Y$独立,则$E(XY) = E(X)E(Y)$

(4)$\left\lbrack E(XY) \right\rbrack^{2} \leq E(X^{2})E(Y^{2})$

Expand All @@ -834,7 +841,7 @@ $C_{1}X + C_{2}Y\tilde{\ }N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2}

(1)$\ D(C) = 0,D\lbrack E(X)\rbrack = 0,D\lbrack D(X)\rbrack = 0$

(2)$\ X$与$Y$相互独立,则$D(X \pm Y) = D(X) + D(Y)$
(2) $X$与$Y$相互独立,则$D(X \pm Y) = D(X) + D(Y)$

(3)$\ D\left( C_{1}X + C_{2} \right) = C_{1}^{2}D\left( X \right)$

Expand Down

0 comments on commit 47c5989

Please sign in to comment.