Skip to content

Transfer learning / domain adaptation / domain generalization / multi-task learning etc. Papers, codes, datasets, applications, tutorials.-迁移学习

License

Notifications You must be signed in to change notification settings

xp19991205/transferlearning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Contributors Forks Stargazers Issues


Transfer Leanring

Everything about Transfer Learning. 迁移学习.

PapersTutorialsResearch areasTheorySurveyCodeDataset & benchmark

ThesisScholarsContestsJournal/conferenceApplicationsOthersContributing

Widely used by top conferences and journals:

@Misc{transferlearning.xyz,
howpublished = {\url{http://transferlearning.xyz}},   
title = {Everything about Transfer Learning and Domain Adapation},  
author = {Wang, Jindong and others}  
}  

Awesome MIT License LICENSE 996.icu

Related Codes:


NOTE: You can directly open the code in Gihub Codespaces on the web to run them without downloading! Also, try github.dev.

0.Papers (论文)

Awesome transfer learning papers (迁移学习文章汇总)

  • Paperweekly: A website to recommend and read paper notes

Latest papers:

Updated at 2023-12-14:

  • AAAI24 Relax Image-Specific Prompt Requirement in SAM: A Single Generic Prompt for Segmenting Camouflaged Objects [arxiv][code]

    • A training-free test-time adaptation approach to relax the instance-specific prompts requirment in SAM.
  • Open Domain Generalization with a Single Network by Regularization Exploiting Pre-trained Features [arxiv]

    • Open domain generalization with a single network 用单一网络结构进行开放式domain generalizaition
  • Stronger, Fewer, & Superior: Harnessing Vision Foundation Models for Domain Generalized Semantic Segmentation [arxiv]

    • Using vision foundation models for domain genealized semantic segmentation 用视觉基础模型进行域泛化语义分割
  • DARNet: Bridging Domain Gaps in Cross-Domain Few-Shot Segmentation with Dynamic Adaptation [arxiv]

    • Dynamic adaptation for cross-domain few-shot segmentation 动态适配用于跨领域小样本分割
  • A Unified Framework for Unsupervised Domain Adaptation based on Instance Weighting [arxiv]

    • Instance weighting for domain adaptation 样本加权用于领域自适应

Updated at 2023-12-08:

  • Target-agnostic Source-free Domain Adaptation for Regression Tasks [arxiv]

    • Target-agnostic source-free DA for regression 用于回归任务的source-free DA
  • On the Out-Of-Distribution Robustness of Self-Supervised Representation Learning for Phonocardiogram Signals [arxiv]

    • OOD robustness for self-supervised learning for phonocardiogram 心音图信号自监督的OOD鲁棒性
  • Student Activity Recognition in Classroom Environments using Transfer Learning [arxiv]

    • Using transfer learning to recognize student activities 用迁移学习来识别学生课堂行为

1.Introduction and Tutorials (简介与教程)

Want to quickly learn transfer learning?想尽快入门迁移学习?看下面的教程。


2.Transfer Learning Areas and Papers (研究领域与相关论文)


3.Theory and Survey (理论与综述)

Here are some articles on transfer learning theory and survey.

Survey (综述文章):

Theory (理论文章):


4.Code (代码)

Unified codebases for:

More: see HERE and HERE for an instant run using Google's Colab.


5.Transfer Learning Scholars (著名学者)

Here are some transfer learning scholars and labs.

全部列表以及代表工作性见这里

Please note that this list is far not complete. A full list can be seen in here. Transfer learning is an active field. If you are aware of some scholars, please add them here.


6.Transfer Learning Thesis (硕博士论文)

Here are some popular thesis on transfer learning.

这里, 提取码:txyz。


7.Datasets and Benchmarks (数据集与评测结果)

Please see HERE for the popular transfer learning datasets and benchmark results.

这里整理了常用的公开数据集和一些已发表的文章在这些数据集上的实验结果。


8.Transfer Learning Challenges (迁移学习比赛)


Journals and Conferences

See here for a full list of related journals and conferences.


Applications (迁移学习应用)

See HERE for transfer learning applications.

迁移学习应用请见这里


Other Resources (其他资源)


Contributing (欢迎参与贡献)

If you are interested in contributing, please refer to HERE for instructions in contribution.


Copyright notice

[Notes]This Github repo can be used by following the corresponding licenses. I want to emphasis that it may contain some PDFs or thesis, which were downloaded by me and can only be used for academic purposes. The copyrights of these materials are owned by corresponding publishers or organizations. All this are for better adademic research. If any of the authors or publishers have concerns, please contact me to delete or replace them.

About

Transfer learning / domain adaptation / domain generalization / multi-task learning etc. Papers, codes, datasets, applications, tutorials.-迁移学习

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 86.4%
  • MATLAB 4.1%
  • Jupyter Notebook 3.5%
  • Shell 3.1%
  • Makefile 1.4%
  • Cuda 1.0%
  • Other 0.5%