forked from jayinai/hyperas
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8017676
commit 7f85a6c
Showing
1 changed file
with
114 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
from __future__ import print_function | ||
from hyperopt import Trials, STATUS_OK, tpe | ||
from hyperas import optim | ||
from hyperas.distributions import choice, uniform | ||
|
||
|
||
def data(): | ||
from keras.preprocessing.image import ImageDataGenerator | ||
from keras.datasets import cifar10 | ||
from keras.utils import np_utils | ||
|
||
nb_classes = 10 | ||
# the data, shuffled and split between train and test sets | ||
(X_train, y_train), (X_test, y_test) = cifar10.load_data() | ||
print('X_train shape:', X_train.shape) | ||
print(X_train.shape[0], 'train samples') | ||
print(X_test.shape[0], 'test samples') | ||
|
||
# convert class vectors to binary class matrices | ||
Y_train = np_utils.to_categorical(y_train, nb_classes) | ||
Y_test = np_utils.to_categorical(y_test, nb_classes) | ||
|
||
X_train = X_train.astype('float32') | ||
X_test = X_test.astype('float32') | ||
X_train /= 255 | ||
X_test /= 255 | ||
|
||
# this will do preprocessing and realtime data augmentation | ||
datagen = ImageDataGenerator( | ||
featurewise_center=False, # set input mean to 0 over the dataset | ||
samplewise_center=False, # set each sample mean to 0 | ||
featurewise_std_normalization=False, # divide inputs by std of the dataset | ||
samplewise_std_normalization=False, # divide each input by its std | ||
zca_whitening=False, # apply ZCA whitening | ||
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180) | ||
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) | ||
height_shift_range=0.1, # randomly shift images vertically (fraction of total height) | ||
horizontal_flip=True, # randomly flip images | ||
vertical_flip=False) # randomly flip images | ||
|
||
# compute quantities required for featurewise normalization | ||
# (std, mean, and principal components if ZCA whitening is applied) | ||
datagen.fit(X_train) | ||
|
||
return datagen, X_train, Y_train, X_test, Y_test | ||
|
||
def model(datagen, X_train, Y_train, X_test, Y_test): | ||
from keras.models import Sequential | ||
from keras.layers.core import Dense, Dropout, Activation, Flatten | ||
from keras.layers.convolutional import Convolution2D, MaxPooling2D | ||
from keras.optimizers import SGD | ||
|
||
batch_size = 32 | ||
nb_epoch = 200 | ||
|
||
# input image dimensions | ||
img_rows, img_cols = 32, 32 | ||
# the CIFAR10 images are RGB | ||
img_channels = 3 | ||
|
||
model = Sequential() | ||
|
||
model.add(Convolution2D(32, 3, 3, border_mode='same', | ||
input_shape=(img_channels, img_rows, img_cols))) | ||
model.add(Activation('relu')) | ||
model.add(Convolution2D(32, 3, 3)) | ||
model.add(Activation('relu')) | ||
model.add(MaxPooling2D(pool_size=(2, 2))) | ||
model.add(Dropout({{uniform(0, 1)}})) | ||
|
||
model.add(Convolution2D(64, 3, 3, border_mode='same')) | ||
model.add(Activation('relu')) | ||
model.add(Convolution2D(64, 3, 3)) | ||
model.add(Activation('relu')) | ||
model.add(MaxPooling2D(pool_size=(2, 2))) | ||
model.add(Dropout({{uniform(0, 1)}})) | ||
|
||
model.add(Flatten()) | ||
model.add(Dense(512)) | ||
model.add(Activation('relu')) | ||
model.add(Dropout(0.5)) | ||
model.add(Dense(nb_classes)) | ||
model.add(Activation('softmax')) | ||
|
||
# let's train the model using SGD + momentum (how original). | ||
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) | ||
model.compile(loss='categorical_crossentropy', | ||
optimizer=sgd, | ||
metrics=['accuracy']) | ||
|
||
# fit the model on the batches generated by datagen.flow() | ||
model.fit_generator(datagen.flow(X_train, Y_train, | ||
batch_size=batch_size), | ||
samples_per_epoch=X_train.shape[0], | ||
nb_epoch=nb_epoch, | ||
validation_data=(X_test, Y_test)) | ||
|
||
score, acc = model.evaluate(X_test, Y_test, verbose=0) | ||
|
||
return {'loss': -acc, 'status': STATUS_OK, 'model': model} | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
datagen, X_train, Y_train, X_test, Y_test = data() | ||
|
||
best_run, best_model = optim.minimize(model=model, | ||
data=data, | ||
algo=tpe.suggest, | ||
max_evals=5, | ||
trials=Trials()) | ||
|
||
print("Evalutation of best performing model:") | ||
print(best_model.evaluate(X_test, Y_test)) |