Skip to content

Commit

Permalink
Update preview guidelines in README
Browse files Browse the repository at this point in the history
  • Loading branch information
haku-huang committed Jul 15, 2022
1 parent 301cddf commit 0870f5f
Showing 1 changed file with 21 additions and 3 deletions.
24 changes: 21 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@ In the near future, we will publish the following materials.

## Update

[2022-07-15] Train script for ReCo(v1) is available!

[2022-07-13] Preview of micro-register is available!

[2022-07-12] The ReCo(v0) is available!
Expand Down Expand Up @@ -68,7 +70,7 @@ python test_register.py --backbone $BACKBONE --dst $DST --only_pred
The prediction results will be save in `$DST` and the patches from left to right are `moving`, `fixed` and `moved`,
respectively.

## Get start (v0) (**current recommended**)
## Get start (v0) (**Recommended for Now**)

1. To use our pre-trained parameters of ECCV-22 for fusion, you need to prepare your dataset in `$ROOT/data/$NAME`.

Expand All @@ -87,7 +89,7 @@ python fuse.py --ir ../data/$DATA/ir --vi ../data/$DATA/vi --dst $SAVE_TO_WHERE

3. Now, you will find the fusion results in `$SAVE_TO_WHERE`, this operation will create output folder automatically.

## **Building:** ~~Get start (v1)~~
## Get start (v1) **Preview Version**

**Only recommended if you are intending in training ReCo+ yourself.**

Expand All @@ -112,10 +114,26 @@ part.**
2. Activate your conda environment `conda activate $CONDA_ENV`.

```shell
# set project path for python
export PYTHONPATH="${PYTHONPATH}:$RECO_ROOT"
# only train fuse part (ReCo) **current recommended**
python train.py --register x --data data/$DATA --ckpt $CHECKPOINT_PATH --lr 1e-3
python train.py --data data/$DATA --ckpt $CHECKPOINT_PATH --lr 1e-3
# train registration and fuse (ReCo+)
python train.py --register m --data data/$DATA --ckpt $CHECKPOINT_PATH --lr 1e-3 --deform $DEFORM_LEVEL
```

The `$DEFORM_LEVEL` should be `easy`, `normal` or `hard`.

⚠️ Limitations: As mentioned in the paper, when the difference between mid-wave infrared and visible images in your
dataset is too large, the register may not converge properly.

3. To generate the fusion images with pre-trained parameters, just run the following.

```shell
# set project path for python
export PYTHONPATH="${PYTHONPATH}:$RECO_ROOT"
# only fuse part (ReCo) **current recommended**
python pred.py --data $data/$DATA --ckpt $CHECKPOINT_PATH --dst $SAVE_TO_WHERE
# registration & fuse (ReCo+)
python pred.py --register m --data $data/$DATA --ckpt $CHECKPOINT_PATH --dst $SAVE_TO_WHERE
```

0 comments on commit 0870f5f

Please sign in to comment.