Skip to content

xuyanwu/RAL-Net

Repository files navigation

RAL-Net

This code is the implementation of our ACCV2018 paper Robust Angular Local Descriptor Learning

Enviromental built:

Please install python 3.6, pytorch 0.4.1, opencv 3.4

pip install python==3.6

conda install pytorch=0.4.1 cuda90 -c pytorch

To replicate the result of this paper:

python RAL_Net.py --data-root='your data root' --epochs=10 --batch-size=512 --n-pairs=5000000 --loss-type=RAL_loss --lr=10 --augmentation=True

Result:

Performance comparison on Brown dataset, lower score and perform better

Performance comparison on Hpatches dataset, Higher score and perform better

Performance comparison on Wxbs dataset, Higher score and perform better

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages